SiegeITheta3

Viow the online version at

- functions.wolfram.com

Notations

Traditional name

Siegel theta function

Traditional notation

$$
\Theta\left[\begin{array}{l}
\left\{u_{1}, \ldots, u_{r}\right\} \\
\left\{v_{1}, \ldots, v_{r}\right\}
\end{array}\right]\left(\left(\begin{array}{ccc}
m_{1,1} & \ldots & m_{1, r} \\
\ldots & \ldots & \ldots \\
m_{r, 1} & \ldots & m_{r, r}
\end{array}\right),\left\{s_{1}, \ldots, s_{r}\right\}\right)
$$

Mathematica StandardForm notation

```
SiegelTheta[{{\mp@subsup{u}{1}{},.., \mp@subsup{u}{r}{}},{\mp@subsup{v}{1}{},.., \mp@subsup{v}{r}{}}},{{\mp@subsup{m}{1,1}{},.., \mp@subsup{m}{1,r}{}},.., {\mp@subsup{m}{r,1}{},.., m}\mp@subsup{m}{r,r}{}}},{\mp@subsup{s}{1}{},.., \mp@subsup{s}{r}{}}
```


Primary definition

$$
\begin{gathered}
09.59 .02 .0001 .01 \\
\Theta\left[\begin{array}{c}
\left\{u_{1}, \ldots, u_{r}\right\} \\
\left\{v_{1}, \ldots, v_{r}\right\}
\end{array}\right]\left(\left(\begin{array}{ccc}
m_{1,1} & \ldots & m_{1, r} \\
\ldots & \ldots & \ldots \\
m_{r, 1} & \ldots & m_{r, r}
\end{array}\right),\left\{s_{1}, \ldots, s_{r}\right\}\right)=\sum_{n_{1}=-\infty}^{\infty} \ldots \sum_{n_{r}=-\infty}^{\infty} e^{i \pi((n+u) \cdot \Omega \cdot(n+u)+2(n+u) \cdot(s+v))} / ; u= \\
\left\{u_{1}, \ldots, u_{r}\right\} \wedge v=\left\{v_{1}, \ldots, v_{r}\right\} \bigwedge \Omega=\left\{\left\{m_{1,1}, \ldots, m_{1, r}\right\}, \ldots,\left\{m_{r, 1}, \ldots, m_{r, r}\right\}\right\} \wedge s=\left\{s_{1}, \ldots, s_{r}\right\} \wedge n= \\
\quad\left\{n_{1}, \ldots, n_{r}\right\} \wedge n+u=\left\{n_{1}+u_{1}, \ldots, n_{r}+u_{r}\right\} \bigwedge s+v=\left\{s_{1}+v_{1}, \ldots, s_{r}+v_{r}\right\}
\end{gathered}
$$

The Siegel theta function $\Theta\left[\begin{array}{l}u \\ v\end{array}\right](\Omega, s)$ with characteristic $\binom{u}{v} / ; u==\left\{u_{1}, \ldots, u_{r}\right\} \wedge v==\left\{v_{1}, \ldots, v_{r}\right\}$, symmetric Riemann modular matrix $\Omega=\left\{\left\{m_{1,1}, \ldots, m_{1, r}\right\}, \ldots,\left\{m_{r, 1}, \ldots, m_{r, r}\right\}\right\}$ with positive definite imaginary part and vector $s=\left\{s_{1}, \ldots, s_{r}\right\}$ is defined through $\sum_{n_{1}=-\infty}^{\infty} \ldots \sum_{n_{r}=-\infty}^{\infty} e^{i \pi\left((n+u) \cdot \Omega^{T} \cdot(n+u)+2(n+u) \cdot(s+v)\right)}$, where Ω^{T} means transposed to Ω matrix (or vector) and n ranges over all possible vectors in the r-dimensional integer lattice.

Copyright

This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/Notations/.

Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example:
http://functions.wolfram.com/Constants/E/

To refer to a particular formula, cite functions.wolfram.com followed by the citation number.
e.g.: http://functions.wolfram.com/01.03.03.0001.01

This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com.
© 2001-2008, Wolfram Research, Inc.

