
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/05.10.16.0007.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
SphericalHarmonicY[Subscript[n, 1], Subscript[m, 1], \[CurlyTheta],
\[CurlyPhi]] SphericalHarmonicY[Subscript[n, 2], Subscript[m, 2],
\[CurlyTheta], \[CurlyPhi]] ==
Sqrt[((2 Subscript[n, 1] + 1) (2 Subscript[n, 2] + 1))/(4 Pi)]
Sum[(SphericalHarmonicY[k, Subscript[m, 1] + Subscript[m, 2],
\[CurlyTheta], \[CurlyPhi]]/Sqrt[2 k + 1])
ClebschGordan[{Subscript[n, 1], 0}, {Subscript[n, 2], 0}, {k, 0}]
ClebschGordan[{Subscript[n, 1], Subscript[m, 1]},
{Subscript[n, 2], Subscript[m, 2]},
{k, Subscript[m, 1] + Subscript[m, 2]}],
{k, Max[Abs[Subscript[n, 1] - Subscript[n, 2]],
Abs[Subscript[m, 1] + Subscript[m, 2]]], Subscript[n, 1] +
Subscript[n, 2]}] /; Element[Subscript[n, 1], Integers] &&
Subscript[n, 1] >= 0 && Element[Subscript[n, 2], Integers] &&
Subscript[n, 2] >= 0 && Element[Subscript[m, 1], Integers] &&
Element[Subscript[m, 2], Integers] && Abs[Subscript[m, 1]] <=
Subscript[n, 1] && Abs[Subscript[m, 2]] <= Subscript[n, 2]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["SphericalHarmonicY", "[", RowBox[List[SubscriptBox["n", "1"], ",", SubscriptBox["m", "1"], ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List[SubscriptBox["n", "2"], ",", SubscriptBox["m", "2"], ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]], "\[Equal]", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["n", "1"]]], "+", "1"]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["n", "2"]]], "+", "1"]], ")"]]]], RowBox[List["4", "\[Pi]", " "]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["Max", "[", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["n", "1"], "-", SubscriptBox["n", "2"]]], "]"]], ",", RowBox[List["Abs", "[", RowBox[List[SubscriptBox["m", "1"], "+", SubscriptBox["m", "2"]]], "]"]]]], "]"]]]], RowBox[List[SubscriptBox["n", "1"], "+", SubscriptBox["n", "2"]]]], " ", RowBox[List[FractionBox[RowBox[List["SphericalHarmonicY", "[", RowBox[List["k", ",", RowBox[List[SubscriptBox["m", "1"], "+", SubscriptBox["m", "2"]]], ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], SqrtBox[RowBox[List[RowBox[List["2", "k"]], "+", "1"]]]], RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["n", "1"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["n", "2"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "0"]], "}"]]]], "]"]], RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["n", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["n", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", RowBox[List[SubscriptBox["m", "1"], "+", SubscriptBox["m", "2"]]]]], "}"]]]], "]"]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["n", "1"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["n", "1"], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[SubscriptBox["n", "2"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["n", "2"], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[SubscriptBox["m", "1"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["m", "2"], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["m", "1"], "]"]], "\[LessEqual]", SubscriptBox["n", "1"]]], "\[And]", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["m", "2"], "]"]], "\[LessEqual]", SubscriptBox["n", "2"]]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msubsup> <mi> Y </mi> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </msubsup> <mo> ( </mo> <mrow> <mi> ϑ </mi> <mo> , </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <mi> Y </mi> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </msubsup> <mo> ( </mo> <mrow> <mi> ϑ </mi> <mo> , </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> n </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> max </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> , </mo> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </mrow> </munderover> <mtext> </mtext> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mi> Y </mi> <mi> k </mi> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> ϑ </mi> <mo> , </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mo> 〈 </mo> <mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <mn> 0 </mn> <mo> ⁢ </mo> <mtext>   </mtext> <mn> 0 </mn> </mrow> <mtext>   </mtext> <mo> ❘ </mo> <mtext>   </mtext> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <mi> k </mi> <mo> ⁢ </mo> <mtext>   </mtext> <mn> 0 </mn> </mrow> </mrow> <mo> 〉 </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[LeftAngleBracket]", RowBox[List[RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", "0", "\[MediumSpace]", "0"]], "\[MediumSpace]", "\[VerticalSeparator]", "\[MediumSpace]", RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", "k", "\[MediumSpace]", "0"]]]], "\[RightAngleBracket]"]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mo> 〈 </mo> <mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mtext>   </mtext> <mo> ❘ </mo> <mtext>   </mtext> <mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <mi> k </mi> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> 〉 </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[LeftAngleBracket]", RowBox[List[RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", SubscriptBox["m", "1"], "\[MediumSpace]", SubscriptBox["m", "2"]]], "\[MediumSpace]", "\[VerticalSeparator]", "\[MediumSpace]", RowBox[List[RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", "k", "\[MediumSpace]", SubscriptBox["m", "1"]]], "+", SubscriptBox["m", "2"]]]]], "\[RightAngleBracket]"]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> ≤ </mo> <msub> <mi> n </mi> <mn> 1 </mn> </msub> </mrow> <mo> ∧ </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> ≤ </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <mrow> <msubsup> <mi> Y </mi> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </msubsup> <mo> ( </mo> <mrow> <mi> ϑ </mi> <mo> , </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <mi> Y </mi> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </msubsup> <mo> ( </mo> <mrow> <mi> ϑ </mi> <mo> , </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> n </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> max </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> , </mo> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </mrow> </munderover> <mtext> </mtext> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mi> Y </mi> <mi> k </mi> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> ϑ </mi> <mo> , </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mo> 〈 </mo> <mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <mn> 0 </mn> <mo> ⁢ </mo> <mtext>   </mtext> <mn> 0 </mn> </mrow> <mtext>   </mtext> <mo> ❘ </mo> <mtext>   </mtext> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <mi> k </mi> <mo> ⁢ </mo> <mtext>   </mtext> <mn> 0 </mn> </mrow> </mrow> <mo> 〉 </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[LeftAngleBracket]", RowBox[List[RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", "0", "\[MediumSpace]", "0"]], "\[MediumSpace]", "\[VerticalSeparator]", "\[MediumSpace]", RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", "k", "\[MediumSpace]", "0"]]]], "\[RightAngleBracket]"]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mo> 〈 </mo> <mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mtext>   </mtext> <mo> ❘ </mo> <mtext>   </mtext> <mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <mi> k </mi> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> 〉 </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[LeftAngleBracket]", RowBox[List[RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", SubscriptBox["m", "1"], "\[MediumSpace]", SubscriptBox["m", "2"]]], "\[MediumSpace]", "\[VerticalSeparator]", "\[MediumSpace]", RowBox[List[RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", "k", "\[MediumSpace]", SubscriptBox["m", "1"]]], "+", SubscriptBox["m", "2"]]]]], "\[RightAngleBracket]"]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> ≤ </mo> <msub> <mi> n </mi> <mn> 1 </mn> </msub> </mrow> <mo> ∧ </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> ≤ </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["SphericalHarmonicY", "[", RowBox[List[SubscriptBox["n_", "1"], ",", SubscriptBox["m_", "1"], ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List[SubscriptBox["n_", "2"], ",", SubscriptBox["m_", "2"], ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["nn", "1"]]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["nn", "2"]]], "+", "1"]], ")"]]]], RowBox[List["4", " ", "\[Pi]"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["Max", "[", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["nn", "1"], "-", SubscriptBox["nn", "2"]]], "]"]], ",", RowBox[List["Abs", "[", RowBox[List[SubscriptBox["mm", "1"], "+", SubscriptBox["mm", "2"]]], "]"]]]], "]"]]]], RowBox[List[SubscriptBox["nn", "1"], "+", SubscriptBox["nn", "2"]]]], FractionBox[RowBox[List[RowBox[List["SphericalHarmonicY", "[", RowBox[List["k", ",", RowBox[List[SubscriptBox["mm", "1"], "+", SubscriptBox["mm", "2"]]], ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["nn", "1"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["nn", "2"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "0"]], "}"]]]], "]"]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["nn", "1"], ",", SubscriptBox["mm", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["nn", "2"], ",", SubscriptBox["mm", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", RowBox[List[SubscriptBox["mm", "1"], "+", SubscriptBox["mm", "2"]]]]], "}"]]]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["nn", "1"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["nn", "1"], "\[GreaterEqual]", "0"]], "&&", RowBox[List[SubscriptBox["nn", "2"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["nn", "2"], "\[GreaterEqual]", "0"]], "&&", RowBox[List[SubscriptBox["mm", "1"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["mm", "2"], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["mm", "1"], "]"]], "\[LessEqual]", SubscriptBox["nn", "1"]]], "&&", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["mm", "2"], "]"]], "\[LessEqual]", SubscriptBox["nn", "2"]]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|