Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AiryAi






Mathematica Notation

Traditional Notation









Bessel-Type Functions > AiryAi[z] > Integration > Definite integration > Involving the direct function and derivatives





http://functions.wolfram.com/03.05.21.0082.01









  


  










Input Form





Derivative[n + m - 2][AiryAi][(x + y)/t^(1/3)] == t^((1/3) (n + m - 1)) Integrate[(Derivative[n][AiryAi][x/\[Tau]^(1/3)] Derivative[m][AiryAi][y/(t - \[Tau])^(1/3)])/ (\[Tau]^((n + 1)/3) (t - \[Tau])^((m + 1)/3)), {\[Tau], 0, t}] /; Element[n, Integers] && Element[m, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["AiryAi", TagBox[RowBox[List["(", RowBox[List["n", "+", "m", "-", "2"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", FractionBox[RowBox[List["x", "+", "y"]], SuperscriptBox["t", RowBox[List["1", "/", "3"]]]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["t", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["n", "+", "m", "-", "1"]], ")"]]]]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "t"], RowBox[List[FractionBox[RowBox[List[RowBox[List[SuperscriptBox["AiryAi", TagBox[RowBox[List["(", "n", ")"]], Derivative], Rule[MultilineFunction, None]], "[", FractionBox["x", SuperscriptBox["\[Tau]", RowBox[List["1", "/", "3"]]]], "]"]], " ", RowBox[List[SuperscriptBox["AiryAi", TagBox[RowBox[List["(", "m", ")"]], Derivative], Rule[MultilineFunction, None]], "[", FractionBox["y", SuperscriptBox[RowBox[List["(", RowBox[List["t", "-", "\[Tau]"]], ")"]], RowBox[List["1", "/", "3"]]]], "]"]]]], RowBox[List[SuperscriptBox["\[Tau]", FractionBox[RowBox[List["n", "+", "1"]], "3"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["t", "-", "\[Tau]"]], ")"]], FractionBox[RowBox[List["m", "+", "1"]], "3"]]]]], RowBox[List["\[DifferentialD]", "\[Tau]"]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> Ai </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;n&quot;, &quot;-&quot;, &quot;2&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> x </mi> <mo> + </mo> <mi> y </mi> </mrow> <mroot> <mi> t </mi> <mn> 3 </mn> </mroot> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mi> t </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> t </mi> </msubsup> <mrow> <mfrac> <mrow> <mrow> <msup> <mi> Ai </mi> <semantics> <mrow> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;n&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mfrac> <mi> x </mi> <mroot> <mi> &#964; </mi> <mn> 3 </mn> </mroot> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> Ai </mi> <semantics> <mrow> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;m&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mfrac> <mi> y </mi> <mroot> <mrow> <mi> t </mi> <mo> - </mo> <mi> &#964; </mi> </mrow> <mn> 3 </mn> </mroot> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> &#964; </mi> <mfrac> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> t </mi> <mo> - </mo> <mi> &#964; </mi> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </mfrac> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> &#964; </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8484; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8484; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> D </ci> <apply> <ci> AiryAi </ci> <apply> <times /> <apply> <plus /> <ci> x </ci> <ci> y </ci> </apply> <apply> <power /> <apply> <power /> <ci> t </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <list> <apply> <times /> <apply> <plus /> <ci> x </ci> <ci> y </ci> </apply> <apply> <power /> <apply> <power /> <ci> t </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </list> </apply> <apply> <times /> <apply> <power /> <ci> t </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 3 </cn> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <int /> <bvar> <ci> &#964; </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> t </ci> </uplimit> <apply> <times /> <apply> <ci> D </ci> <apply> <ci> AiryAi </ci> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <power /> <ci> &#964; </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <list> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <power /> <ci> &#964; </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> n </ci> </list> </apply> <apply> <ci> D </ci> <apply> <ci> AiryAi </ci> <apply> <times /> <ci> y </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> t </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#964; </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <list> <apply> <times /> <ci> y </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> t </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#964; </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> </list> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> &#964; </ci> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> t </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#964; </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <ci> &#8484; </ci> </apply> <apply> <in /> <ci> m </ci> <ci> &#8484; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["AiryAi", TagBox[RowBox[List["(", RowBox[List["n", "+", "m", "-", "2"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", FractionBox[RowBox[List["x_", "+", "y_"]], SuperscriptBox["t_", RowBox[List["1", "/", "3"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["t", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["n", "+", "m", "-", "1"]], ")"]]]]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "t"], RowBox[List[FractionBox[RowBox[List[RowBox[List[SuperscriptBox["AiryAi", TagBox[RowBox[List["(", "n", ")"]], Derivative], Rule[MultilineFunction, None]], "[", FractionBox["x", SuperscriptBox["\[Tau]", RowBox[List["1", "/", "3"]]]], "]"]], " ", RowBox[List[SuperscriptBox["AiryAi", TagBox[RowBox[List["(", "m", ")"]], Derivative], Rule[MultilineFunction, None]], "[", FractionBox["y", SuperscriptBox[RowBox[List["(", RowBox[List["t", "-", "\[Tau]"]], ")"]], RowBox[List["1", "/", "3"]]]], "]"]]]], RowBox[List[SuperscriptBox["\[Tau]", FractionBox[RowBox[List["n", "+", "1"]], "3"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["t", "-", "\[Tau]"]], ")"]], FractionBox[RowBox[List["m", "+", "1"]], "3"]]]]], RowBox[List["\[DifferentialD]", "\[Tau]"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.