Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AiryAi






Mathematica Notation

Traditional Notation









Bessel-Type Functions > AiryAi[z] > Representations through more general functions > Through Meijer G > Classical cases involving 0F1





http://functions.wolfram.com/03.05.26.0022.01









  


  










Input Form





AiryAi[3^(2/3) z^(1/3)] Hypergeometric0F1[b, z] == (Gamma[b]/(3^(1/6) Pi^(3/2))) 2^(-(7/3) + b) MeijerG[{{(1/6) (4 - 3 b), (1/6) (7 - 3 b)}, {}}, {{0, 1/3}, {1 - b, 4/3 - b}}, 4 z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["AiryAi", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]], RowBox[List["Hypergeometric0F1", "[", RowBox[List["b", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["Gamma", "[", "b", "]"]], RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]]], SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["7", "3"]]], "+", "b"]]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["3", " ", "b"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["3", " ", "b"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", "b"]], ",", RowBox[List[FractionBox["4", "3"], "-", "b"]]]], "}"]]]], "}"]], ",", RowBox[List["4", " ", "z"]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> Ai </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;0&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;b&quot;, Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric0F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mi> b </mi> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 3 </mn> </mfrac> </mrow> </msup> </mrow> <mrow> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> - </mo> <mi> b </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;4&quot;]], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;4&quot;, &quot; &quot;, &quot;z&quot;]], MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;6&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;4&quot;, &quot;-&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;b&quot;]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;6&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;7&quot;, &quot;-&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;b&quot;]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;3&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;b&quot;]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;4&quot;, &quot;3&quot;], &quot;-&quot;, &quot;b&quot;]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <times /> <apply> <ci> AiryAi </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <ci> Hypergeometric0F1 </ci> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <plus /> <cn type='integer'> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> </list> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["AiryAi", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z_", RowBox[List["1", "/", "3"]]]]], "]"]], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List["b_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["Gamma", "[", "b", "]"]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["7", "3"]]], "+", "b"]]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["3", " ", "b"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["3", " ", "b"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", "b"]], ",", RowBox[List[FractionBox["4", "3"], "-", "b"]]]], "}"]]]], "}"]], ",", RowBox[List["4", " ", "z"]]]], "]"]]]], RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21





© 1998-2014 Wolfram Research, Inc.