Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AiryAiPrime






Mathematica Notation

Traditional Notation









Bessel-Type Functions > AiryAiPrime[z] > Integration > Indefinite integration > Involving direct function and Bessel-type functions > Involving other Airy functions > Involving Ai and exp > Power arguments





http://functions.wolfram.com/03.07.21.0077.01









  


  










Input Form





Integrate[(z AiryAi[z^2] - AiryAiPrime[z^2])/E^((2/3) z^3), z] == (1/(60 3^(2/3))) ((1/Gamma[1/3]) (60 3^(1/3) z HypergeometricPFQ[ {-(1/6), 1/3}, {-(1/3), 4/3}, (-(4/3)) z^3]) + (1/Gamma[2/3]) (30 z^2 HypergeometricPFQ[{1/6, 2/3}, {1/3, 5/3}, (-(4/3)) z^3]) - (1/Gamma[4/3]) (5 3^(1/3) z^4 HypergeometricPFQ[{5/6, 4/3}, {5/3, 7/3}, (-(4/3)) z^3]) - (1/Gamma[5/3]) (4 z^5 HypergeometricPFQ[{7/6, 5/3}, {7/3, 8/3}, (-(4/3)) z^3]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["2", "3"]]], SuperscriptBox["z", "3"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["AiryAi", "[", SuperscriptBox["z", "2"], "]"]]]], "-", RowBox[List["AiryAiPrime", "[", SuperscriptBox["z", "2"], "]"]]]], ")"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["60", " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]], RowBox[List["(", RowBox[List["60", " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", "z", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "6"]]], ",", FractionBox["1", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], ",", FractionBox["4", "3"]]], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["4", "3"]]], SuperscriptBox["z", "3"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]]], RowBox[List["(", RowBox[List["30", " ", SuperscriptBox["z", "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "6"], ",", FractionBox["2", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "3"], ",", FractionBox["5", "3"]]], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["4", "3"]]], SuperscriptBox["z", "3"]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", FractionBox["4", "3"], "]"]]], RowBox[List["(", RowBox[List["5", " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", "4"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["5", "6"], ",", FractionBox["4", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "3"], ",", FractionBox["7", "3"]]], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["4", "3"]]], SuperscriptBox["z", "3"]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]], RowBox[List["(", RowBox[List["4", " ", SuperscriptBox["z", "5"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["7", "6"], ",", FractionBox["5", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["7", "3"], ",", FractionBox["8", "3"]]], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["4", "3"]]], SuperscriptBox["z", "3"]]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> Ai </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> Ai </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 60 </mn> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 7 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 8 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;7&quot;, &quot;6&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;5&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;7&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;8&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, FractionBox[&quot;4&quot;, &quot;3&quot;]]], SuperscriptBox[&quot;z&quot;, &quot;3&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mroot> <mn> 3 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 5 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;5&quot;, &quot;6&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;4&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;5&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;7&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, FractionBox[&quot;4&quot;, &quot;3&quot;]]], SuperscriptBox[&quot;z&quot;, &quot;3&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;6&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;2&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;5&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, FractionBox[&quot;4&quot;, &quot;3&quot;]]], SuperscriptBox[&quot;z&quot;, &quot;3&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 60 </mn> <mo> &#8290; </mo> <mroot> <mn> 3 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, &quot;6&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, &quot;3&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;4&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, FractionBox[&quot;4&quot;, &quot;3&quot;]]], SuperscriptBox[&quot;z&quot;, &quot;3&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <ci> AiryAi </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> AiryAiPrime </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <cn type='rational'> 5 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 7 <sep /> 6 </cn> <cn type='rational'> 5 <sep /> 3 </cn> </list> <list> <cn type='rational'> 7 <sep /> 3 </cn> <cn type='rational'> 8 <sep /> 3 </cn> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 4 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <cn type='rational'> 4 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 5 <sep /> 6 </cn> <cn type='rational'> 4 <sep /> 3 </cn> </list> <list> <cn type='rational'> 5 <sep /> 3 </cn> <cn type='rational'> 7 <sep /> 3 </cn> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 4 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 1 <sep /> 6 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </list> <list> <cn type='rational'> 1 <sep /> 3 </cn> <cn type='rational'> 5 <sep /> 3 </cn> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 4 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <ci> Gamma </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='rational'> 4 <sep /> 3 </cn> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 4 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["-", "2"]], ")"]], " ", SuperscriptBox["z_", "3"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["z_", " ", RowBox[List["AiryAi", "[", SuperscriptBox["z_", "2"], "]"]]]], "-", RowBox[List["AiryAiPrime", "[", SuperscriptBox["z_", "2"], "]"]]]], ")"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[FractionBox[RowBox[List["60", " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", "z", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "6"]]], ",", FractionBox["1", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], ",", FractionBox["4", "3"]]], "}"]], ",", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["-", "4"]], ")"]], " ", SuperscriptBox["z", "3"]]]]], "]"]]]], RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]], "+", FractionBox[RowBox[List["30", " ", SuperscriptBox["z", "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "6"], ",", FractionBox["2", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "3"], ",", FractionBox["5", "3"]]], "}"]], ",", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["-", "4"]], ")"]], " ", SuperscriptBox["z", "3"]]]]], "]"]]]], RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]]], "-", FractionBox[RowBox[List["5", " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", "4"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["5", "6"], ",", FractionBox["4", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "3"], ",", FractionBox["7", "3"]]], "}"]], ",", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["-", "4"]], ")"]], " ", SuperscriptBox["z", "3"]]]]], "]"]]]], RowBox[List["Gamma", "[", FractionBox["4", "3"], "]"]]], "-", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "5"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["7", "6"], ",", FractionBox["5", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["7", "3"], ",", FractionBox["8", "3"]]], "}"]], ",", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["-", "4"]], ")"]], " ", SuperscriptBox["z", "3"]]]]], "]"]]]], RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]]]], RowBox[List["60", " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.