Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AiryBi






Mathematica Notation

Traditional Notation









Bessel-Type Functions > AiryBi[z] > Series representations > Asymptotic series expansions > Expansions for any z in exponential form > Using exponential function with branch cut-containing arguments





http://functions.wolfram.com/03.06.06.0014.01









  


  










Input Form





AiryBi[z] \[Proportional] (1/((-z^3)^(5/12) (2 Sqrt[Pi]))) (((-1)^(5/12) (z + (-z^3)^(1/3)/(-1)^3^(-1)) (1 + O[1/z^(3/2)]))/ E^((2/3) I Sqrt[-z^3]) - (-1)^(7/12) E^((2/3) I Sqrt[-z^3]) (z + (-1)^(1/3) (-z^3)^(1/3)) (1 + O[1/z^(3/2)])) /; (Abs[z] -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["AiryBi", "[", "z", "]"]], "\[Proportional]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List[RowBox[List["-", "5"]], "/", "12"]]], RowBox[List["2", " ", SqrtBox["\[Pi]"]]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["5", "/", "12"]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["2", "3"]]], " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]]], " ", " ", RowBox[List["(", RowBox[List["z", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "3"]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]], "]"]]]], ")"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "12"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["2", "3"], " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]]], " ", " ", RowBox[List["(", RowBox[List["z", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]], "]"]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> Bi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> / </mo> <mn> 12 </mn> </mrow> </msup> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 12 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mtext> </mtext> <mtext> </mtext> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </mroot> </mfrac> <mo> &#8290; </mo> <mroot> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 12 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <mtext> </mtext> <mtext> </mtext> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <mroot> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> AiryBi </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> -5 <sep /> 12 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 12 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <ci> z </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 12 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <ci> z </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AiryBi", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List[RowBox[List["-", "5"]], "/", "12"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["5", "/", "12"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["-", "2"]], ")"]], " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]]], " ", RowBox[List["(", RowBox[List["z", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", FractionBox["3", "2"]]], "]"]]]], ")"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "12"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["2", "3"], " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]]], " ", RowBox[List["(", RowBox[List["z", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", FractionBox["3", "2"]]], "]"]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.