Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AiryBi






Mathematica Notation

Traditional Notation









Bessel-Type Functions > AiryBi[z] > Series representations > Asymptotic series expansions > Expansions for any z in trigonometric form > Using trigonometric functions with branch cut-containing arguments





http://functions.wolfram.com/03.06.06.0030.01









  


  










Input Form





AiryBi[z] \[Proportional] (1/(2 Sqrt[Pi] (-z^3)^(5/12))) ((Sqrt[3] (z + (-z^3)^(1/3)) Cos[Pi/4 - (2 Sqrt[-z^3])/3] + (-z + (-z^3)^(1/3)) Cos[Pi/4 + (2 Sqrt[-z^3])/3]) (1 + O[1/z^9]) + (5/(48 Sqrt[-z^3])) ((-z + (-z^3)^(1/3)) Cos[Pi/4 - (2 Sqrt[-z^3])/3] - Sqrt[3] (z + (-z^3)^(1/3)) Cos[Pi/4 + (2 Sqrt[-z^3])/3]) (1 + O[1/z^9])) /; (Abs[z] -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["AiryBi", "[", "z", "]"]], "\[Proportional]", RowBox[List[FractionBox["1", RowBox[List["2", " ", SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "12"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["3"], " ", RowBox[List["(", RowBox[List["z", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "-", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "z"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "+", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"]]], "]"]]]]]], ")"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", "9"]], "]"]]]], ")"]]]], " ", "+", RowBox[List[FractionBox["5", RowBox[List["48", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "z"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "-", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"]]], "]"]]]], "-", RowBox[List[SqrtBox["3"], " ", RowBox[List["(", RowBox[List["z", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "+", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"]]], "]"]]]]]], ")"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", "9"]], "]"]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> Bi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 12 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mroot> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> </mrow> <mn> 3 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> &#960; </mi> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mroot> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 5 </mn> <mrow> <mn> 48 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mroot> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mroot> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> </mrow> <mn> 3 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> &#960; </mi> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> AiryBi </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 12 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <ci> z </ci> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <ci> z </ci> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AiryBi", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["3"], " ", RowBox[List["(", RowBox[List["z", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "-", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "z"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "+", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", "9"]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List["5", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "z"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "-", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"]]], "]"]]]], "-", RowBox[List[SqrtBox["3"], " ", RowBox[List["(", RowBox[List["z", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "4"], "+", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", "9"]], "]"]]]], ")"]]]], RowBox[List["48", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "12"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21





© 1998- Wolfram Research, Inc.