Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AiryBiPrime






Mathematica Notation

Traditional Notation









Bessel-Type Functions > AiryBiPrime[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving exponential function > Involving exp > Linear argument





http://functions.wolfram.com/03.08.21.0009.01









  


  










Input Form





Integrate[AiryBiPrime[a z]/E^((2/3) (a z)^(3/2)), z] == (-(1/(15 3^(1/6) a Gamma[5/3]))) (2 (3 HypergeometricPFQ[{-(5/6)}, {1/3}, (-(4/3)) (a z)^(3/2)] + 10 (a z)^(3/2) HypergeometricPFQ[{1/6}, {4/3}, (-(4/3)) (a z)^(3/2)])) + (1/(5 Gamma[1/3])) (3^(1/6) z (5 HypergeometricPFQ[{-(1/6)}, {5/3}, (-(4/3)) (a z)^(3/2)] - 2 (a z)^(3/2) HypergeometricPFQ[{5/6}, {8/3}, (-(4/3)) (a z)^(3/2)]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["2", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], RowBox[List["AiryBiPrime", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["15", " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", "a", " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]]]]]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["5", "6"]]], "}"]], ",", RowBox[List["{", FractionBox["1", "3"], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["4", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]]]], "+", RowBox[List["10", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["1", "6"], "}"]], ",", RowBox[List["{", FractionBox["4", "3"], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["4", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]]]]]], ")"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["5", " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["1", "6"]]], "}"]], ",", RowBox[List["{", FractionBox["5", "3"], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["4", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["5", "6"], "}"]], ",", RowBox[List["{", FractionBox["8", "3"], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["4", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> Bi </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> <mo> &#8290; </mo> <mi> z </mi> <mtext> </mtext> </mrow> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, &quot;6&quot;]]], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;5&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;3&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;4&quot;]], &quot;)&quot;]], &quot; &quot;, SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;a&quot;, &quot; &quot;, &quot;z&quot;]], &quot;)&quot;]], RowBox[List[&quot;3&quot;, &quot;/&quot;, &quot;2&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 6 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 8 </mn> <mn> 3 </mn> </mfrac> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[FractionBox[&quot;5&quot;, &quot;6&quot;], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;8&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;3&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;4&quot;]], &quot;)&quot;]], &quot; &quot;, SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;a&quot;, &quot; &quot;, &quot;z&quot;]], &quot;)&quot;]], RowBox[List[&quot;3&quot;, &quot;/&quot;, &quot;2&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mtext> </mtext> </mrow> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[FractionBox[&quot;1&quot;, &quot;6&quot;], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;4&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;3&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;4&quot;]], &quot;)&quot;]], &quot; &quot;, SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;a&quot;, &quot; &quot;, &quot;z&quot;]], &quot;)&quot;]], RowBox[List[&quot;3&quot;, &quot;/&quot;, &quot;2&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 6 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;5&quot;, &quot;6&quot;]]], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;1&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;3&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;4&quot;]], &quot;)&quot;]], &quot; &quot;, SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;a&quot;, &quot; &quot;, &quot;z&quot;]], &quot;)&quot;]], RowBox[List[&quot;3&quot;, &quot;/&quot;, &quot;2&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> AiryBiPrime </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ci> Gamma </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> </list> <list> <cn type='rational'> 5 <sep /> 3 </cn> </list> <apply> <times /> <cn type='rational'> 1 <sep /> 3 </cn> <cn type='integer'> -4 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 5 <sep /> 6 </cn> </list> <list> <cn type='rational'> 8 <sep /> 3 </cn> </list> <apply> <times /> <cn type='rational'> 1 <sep /> 3 </cn> <cn type='integer'> -4 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <ci> a </ci> <apply> <ci> Gamma </ci> <cn type='rational'> 5 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 1 <sep /> 6 </cn> </list> <list> <cn type='rational'> 4 <sep /> 3 </cn> </list> <apply> <times /> <cn type='rational'> 1 <sep /> 3 </cn> <cn type='integer'> -4 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 6 </cn> </apply> </list> <list> <cn type='rational'> 1 <sep /> 3 </cn> </list> <apply> <times /> <cn type='rational'> 1 <sep /> 3 </cn> <cn type='integer'> -4 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["-", "2"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a_", " ", "z_"]], ")"]], RowBox[List["3", "/", "2"]]]]]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["5", "6"]]], "}"]], ",", RowBox[List["{", FractionBox["1", "3"], "}"]], ",", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["-", "4"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]]]], "+", RowBox[List["10", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["1", "6"], "}"]], ",", RowBox[List["{", FractionBox["4", "3"], "}"]], ",", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["-", "4"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["15", " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", "a", " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["1", "6"]]], "}"]], ",", RowBox[List["{", FractionBox["5", "3"], "}"]], ",", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["-", "4"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["5", "6"], "}"]], ",", RowBox[List["{", FractionBox["8", "3"], "}"]], ",", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["-", "4"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["5", " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29