Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselI






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselI[nu,z] > Specific values > Specialized values > For fixed z > Explicit rational nu





http://functions.wolfram.com/03.02.03.0018.01









  


  










Input Form





BesselI[-(11/3), z] == (-(1/(27 3^(5/6) z^(11/3)))) (80 2^(1/3) (9 z^(4/3) (1 + (9 z^2)/160) (Sqrt[3] AiryAi[(3/2)^(2/3) z^(2/3)] - AiryBi[(3/2)^(2/3) z^(2/3)]) + (1/(4 2^(2/3))) (3^(1/6) (32 + 9 z^2) (-3 AiryAiPrime[(3/2)^(2/3) z^(2/3)] + Sqrt[3] AiryBiPrime[(3/2)^(2/3) z^(2/3)]))))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", FractionBox["11", "3"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["27", " ", SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["11", "/", "3"]]]]]]]], RowBox[List["(", RowBox[List["80", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["4", "/", "3"]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["9", " ", SuperscriptBox["z", "2"]]], "160"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryAi", "[", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "-", RowBox[List["AiryBi", "[", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["4", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List["32", "+", RowBox[List["9", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> I </mi> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 3 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 27 </mn> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 80 </mn> <mo> &#8290; </mo> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 160 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mi> Ai </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> Bi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 32 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> Bi </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> Ai </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> BesselI </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 3 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 27 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 5 <sep /> 6 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 80 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 160 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> AiryAi </ci> <apply> <times /> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> AiryBi </ci> <apply> <times /> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 4 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 32 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> AiryBiPrime </ci> <apply> <times /> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> AiryAiPrime </ci> <apply> <times /> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", FractionBox["11", "3"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["80", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["4", "/", "3"]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["9", " ", SuperscriptBox["z", "2"]]], "160"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryAi", "[", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "-", RowBox[List["AiryBi", "[", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List["32", "+", RowBox[List["9", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]]]], RowBox[List["4", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]]]]]]], ")"]]]], RowBox[List["27", " ", SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["11", "/", "3"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.