Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselI






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselI[nu,z] > Representations through more general functions > Through Meijer G > Classical cases for products of Bessel I





http://functions.wolfram.com/03.02.26.0018.01









  


  










Input Form





BesselI[\[Mu], Sqrt[z]] BesselI[\[Nu], Sqrt[z]] == Sqrt[Pi] Csc[(1/4) Pi (3 + 2 \[Mu] + 2 \[Nu])] MeijerG[{{0, 1/2}, {1/4}}, {{(\[Mu] + \[Nu])/2}, {-((\[Mu] + \[Nu])/2), (\[Mu] - \[Nu])/2, (-\[Mu] + \[Nu])/2, 1/4}}, z] /; !(Element[-\[Mu] - \[Nu] - 1, Integers] && -\[Mu] - \[Nu] - 1 >= 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["BesselI", "[", RowBox[List["\[Mu]", ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List["\[Nu]", ",", SqrtBox["z"]]], "]"]]]], "\[Equal]", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Csc", "[", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["{", FractionBox["1", "4"], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox[RowBox[List["\[Mu]", "+", "\[Nu]"]], "2"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Mu]", "+", "\[Nu]"]], "2"]]], ",", FractionBox[RowBox[List["\[Mu]", "-", "\[Nu]"]], "2"], ",", FractionBox[RowBox[List[RowBox[List["-", "\[Mu]"]], "+", "\[Nu]"]], "2"], ",", FractionBox["1", "4"]]], "}"]]]], "}"]], ",", "z"]], "]"]]]]]], "/;", RowBox[List["Not", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]", "-", "1"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]", "-", "1"]], "\[GreaterEqual]", "0"]]]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msub> <mi> I </mi> <mi> &#956; </mi> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mi> &#957; </mi> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mi> csc </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 5 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> &#956; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;3&quot;, &quot;,&quot;, &quot;5&quot;]], RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;4&quot;], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;\[Mu]&quot;, &quot;+&quot;, &quot;\[Nu]&quot;]], &quot;2&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;\[Mu]&quot;, &quot;+&quot;, &quot;\[Nu]&quot;]], &quot;2&quot;]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;\[Mu]&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], &quot;2&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;\[Nu]&quot;, &quot;-&quot;, &quot;\[Mu]&quot;]], &quot;2&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;4&quot;], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> &#8713; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <times /> <apply> <ci> Subscript </ci> <imaginaryi /> <ci> &#956; </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <imaginaryi /> <ci> &#957; </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> csc </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <cn type='integer'> 0 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </list> <list> <cn type='rational'> 1 <sep /> 4 </cn> </list> </list> <list> <list> <apply> <times /> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </list> </list> <ci> z </ci> </apply> </apply> </apply> <apply> <notin /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["BesselI", "[", RowBox[List["\[Mu]_", ",", SqrtBox["z_"]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List["\[Nu]_", ",", SqrtBox["z_"]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Csc", "[", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["{", FractionBox["1", "4"], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox[RowBox[List["\[Mu]", "+", "\[Nu]"]], "2"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]]]], ",", FractionBox[RowBox[List["\[Mu]", "-", "\[Nu]"]], "2"], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[Mu]"]], "+", "\[Nu]"]], ")"]]]], ",", FractionBox["1", "4"]]], "}"]]]], "}"]], ",", "z"]], "]"]]]], "/;", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]", "-", "1"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]", "-", "1"]], "\[GreaterEqual]", "0"]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.