Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselJ






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselJ[nu,z] > Integral representations > Contour integral representations





http://functions.wolfram.com/03.01.07.0012.01









  


  










Input Form





BesselJ[\[Nu], z] == ((Pi z^\[Nu])/((I z)^\[Nu] (2 Pi I))) ContourIntegral[Gamma[s + \[Nu]/2]/(Gamma[s + (\[Nu] + 1)/2] Gamma[1 + \[Nu]/2 - s] Gamma[(1 - \[Nu])/2 - s])/((I z)/2)^(2 s), \[ScriptCapitalL]["s"]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", SuperscriptBox["z", "\[Nu]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]]]], RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]"]]], RowBox[List[SubscriptBox["\[Integral]", "\[ScriptCapitalL]"], RowBox[List[FractionBox[RowBox[List["Gamma", "[", RowBox[List["s", "+", FractionBox["\[Nu]", "2"]]], "]"]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["s", "+", FractionBox[RowBox[List["\[Nu]", "+", "1"]], "2"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List["1", "+", FractionBox["\[Nu]", "2"], "-", "s"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], "-", "s"]], "]"]]]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "2"], ")"]], RowBox[List[RowBox[List["-", "2"]], "s"]]], RowBox[List["\[DifferentialD]", "s"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> J </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mo> &#8747; </mo> <mi> &#8466; </mi> </msub> <mrow> <mfrac> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> + </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> + </mo> <mfrac> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> s </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> s </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> J </ms> <ms> &#957; </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> &#10869; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#960; </ms> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <ms> &#957; </ms> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> &#8520; </ms> <ms> z </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> &#957; </ms> </list> </apply> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> &#960; </ms> <ms> &#8520; </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <apply> <ci> ErrorBox </ci> <ms> &#8747; </ms> </apply> <ms> &#8466; </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> s </ms> <ms> + </ms> <apply> <ci> FractionBox </ci> <ms> &#957; </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> s </ms> <ms> + </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#957; </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> + </ms> <apply> <ci> FractionBox </ci> <ms> &#957; </ms> <ms> 2 </ms> </apply> <ms> - </ms> <ms> s </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> &#957; </ms> </list> </apply> <ms> 2 </ms> </apply> <ms> - </ms> <ms> s </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#8520; </ms> <ms> z </ms> </list> </apply> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 2 </ms> </list> </apply> <ms> s </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#8518; </ms> <ms> s </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", SuperscriptBox["z", "\[Nu]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]]]], ")"]], " ", RowBox[List["ContourIntegral", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["s", "+", FractionBox["\[Nu]", "2"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "2"], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", "s"]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["s", "+", FractionBox[RowBox[List["\[Nu]", "+", "1"]], "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", FractionBox["\[Nu]", "2"], "-", "s"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], "-", "s"]], "]"]]]]], ",", RowBox[List["\[ScriptCapitalL]", "[", "\"s\"", "]"]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.