Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselK






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselK[nu,z] > Differentiation > Low-order differentiation > With respect to nu





http://functions.wolfram.com/03.04.20.0001.01









  


  










Input Form





Derivative[1, 0][BesselK][\[Nu], z] == ((Pi Csc[Pi \[Nu]])/2) (-2 BesselK[\[Nu], z] Cos[Pi \[Nu]] - (BesselI[-\[Nu], z] + BesselI[\[Nu], z]) Log[z/2] + Sum[(1/k!) ((PolyGamma[1 + k - \[Nu]]/Gamma[1 + k - \[Nu]]) (z/2)^(2 k - \[Nu]) + (PolyGamma[1 + k + \[Nu]]/Gamma[1 + k + \[Nu]]) (z/2)^(2 k + \[Nu])), {k, 0, Infinity}]) /; !Element[\[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["1", ",", "0"]], "]"]], "[", "BesselK", "]"]], "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "2"], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["BesselK", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "z"]], "]"]], " ", "+", RowBox[List["BesselI", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], ")"]], RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List["k", "!"]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "-", "\[Nu]"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "k", "-", "\[Nu]"]], "]"]]], SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List[RowBox[List["2", " ", "k"]], "-", "\[Nu]"]]]]], "+", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "+", "\[Nu]"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "k", "+", "\[Nu]"]], "]"]]], SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List[RowBox[List["2", " ", "k"]], "+", "\[Nu]"]]]]]]], ")"]]]]]]]], ")"]]]]]], "/;", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> K </mi> <annotation encoding='Mathematica'> TagBox[&quot;K&quot;, BesselK] </annotation> </semantics> <mi> &#957; </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> K </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mtext> </mtext> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> I </mi> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msub> <mi> I </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> &#957; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <apply> <ci> Subscript </ci> <apply> <ci> BesselK </ci> <ci> K </ci> </apply> <ci> &#957; </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <csc /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <cos /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <ci> BesselK </ci> <ci> &#957; </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ln /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> BesselI </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <ci> z </ci> </apply> <apply> <ci> BesselI </ci> <ci> &#957; </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> &#957; </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <ci> &#957; </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["BesselK", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["BesselK", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "z"]], "]"]], "+", RowBox[List["BesselI", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], ")"]], " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "-", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List[RowBox[List["2", " ", "k"]], "-", "\[Nu]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "k", "-", "\[Nu]"]], "]"]]], "+", FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "+", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List[RowBox[List["2", " ", "k"]], "+", "\[Nu]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "k", "+", "\[Nu]"]], "]"]]]]], RowBox[List["k", "!"]]]]]]], ")"]]]], "/;", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.