Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselK






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselK[nu,z] > Differentiation > Symbolic differentiation > With respect to nu





http://functions.wolfram.com/03.04.20.0011.02









  


  










Input Form





Derivative[m, 0][BesselK][\[Nu], z] == (Pi/2) Sum[(1/k!) (z/2)^(2 k) D[Csc[Pi \[Nu]] (1/((z/2)^\[Nu] Gamma[k - \[Nu] + 1]) - (z/2)^\[Nu]/Gamma[k + \[Nu] + 1]), {\[Nu], m}], {k, 0, Infinity}] /; Element[m, Integers] && m >= 0 && !Element[\[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["m", ",", "0"]], "]"]], "[", "BesselK", "]"]], "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["\[Pi]", "2"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[" ", RowBox[List["k", "!"]]]]], SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["2", " ", "k"]]], RowBox[List["D", "[", RowBox[List[RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["(", RowBox[List[FractionBox[RowBox[List[" ", SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["-", "\[Nu]"]]]]], RowBox[List["Gamma", "[", RowBox[List["k", "-", "\[Nu]", "+", "1"]], "]"]]], "-", FractionBox[RowBox[List[" ", SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], "\[Nu]"]]], RowBox[List["Gamma", "[", RowBox[List["k", "+", "\[Nu]", "+", "1"]], "]"]]]]], ")"]]]], ",", RowBox[List["{", RowBox[List["\[Nu]", ",", "m"]], "}"]]]], "]"]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> K </mi> <annotation encoding='Mathematica'> TagBox[&quot;K&quot;, BesselK] </annotation> </semantics> <mi> &#957; </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;m&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <mfrac> <msup> <mo> &#8706; </mo> <mi> m </mi> </msup> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> m </mi> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#957; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <apply> <ci> TagBox </ci> <ms> K </ms> <ci> BesselK </ci> </apply> <ms> &#957; </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> , </ms> <ms> 0 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ci> Derivative </ci> </apply> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> &#10869; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> &#960; </ms> <ms> 2 </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8721; </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 0 </ms> </list> </apply> <ms> &#8734; </ms> </apply> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> ! </ms> </list> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> k </ms> </list> </apply> </apply> <apply> <ci> FractionBox </ci> <apply> <ci> SuperscriptBox </ci> <ms> &#8706; </ms> <ms> m </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#8706; </ms> <apply> <ci> SuperscriptBox </ci> <ms> &#957; </ms> <ms> m </ms> </apply> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> csc </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> &#960; </ms> <ms> &#957; </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> - </ms> <ms> &#957; </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> &#957; </ms> </list> </apply> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <ms> &#957; </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <ms> &#957; </ms> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </apply> </list> </apply> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> &#8712; </ms> <ms> &#8469; </ms> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <ms> &#957; </ms> <ms> &#8713; </ms> <apply> <ci> TagBox </ci> <ms> &#8484; </ms> <apply> <ci> Function </ci> <integers /> </apply> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["BesselK", TagBox[RowBox[List["(", RowBox[List["m", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["2", " ", "k"]]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", "m"]], "}"]]]]], RowBox[List["(", RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["-", "\[Nu]"]]], RowBox[List["Gamma", "[", RowBox[List["k", "-", "\[Nu]", "+", "1"]], "]"]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], "\[Nu]"], RowBox[List["Gamma", "[", RowBox[List["k", "+", "\[Nu]", "+", "1"]], "]"]]]]], ")"]]]], ")"]]]]]], RowBox[List["k", "!"]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.