Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselY






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselY[nu,z] > Specific values > Specialized values > For fixed z > Explicit rational nu





http://functions.wolfram.com/03.03.03.0036.01









  


  










Input Form





BesselY[14/3, z] == (-(1/(81 3^(5/6) z^(14/3)))) (1760 2^(1/3) (9 z^(4/3) (1 - (9 z^2)/110) (AiryAi[(-(3/2)^(2/3)) z^(2/3)] - Sqrt[3] AiryBi[(-(3/2)^(2/3)) z^(2/3)]) + (1/1760) ((3/2)^(2/3) (14080 - 4320 z^2 + 81 z^4) (-AiryAiPrime[(-(3/2)^(2/3)) z^(2/3)] + Sqrt[3] AiryBiPrime[(-(3/2)^(2/3)) z^(2/3)]))))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["BesselY", "[", RowBox[List[FractionBox["14", "3"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["81", " ", SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["14", "/", "3"]]]]]]]], RowBox[List["(", RowBox[List["1760", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["4", "/", "3"]]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["9", " ", SuperscriptBox["z", "2"]]], "110"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]], "-", RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "1760"], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["14080", "-", RowBox[List["4320", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["81", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["AiryAiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> Y </mi> <mfrac> <mn> 14 </mn> <mn> 3 </mn> </mfrac> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 81 </mn> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 14 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1760 </mn> <mo> &#8290; </mo> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 110 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Ai </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mi> Bi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 81 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4320 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 14080 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mn> 1760 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> Bi </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> Ai </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> BesselY </ci> <cn type='rational'> 14 <sep /> 3 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 81 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 5 <sep /> 6 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 14 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1760 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 110 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 4 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <ci> AiryAi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> AiryBi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 81 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4320 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 14080 </cn> </apply> <apply> <power /> <cn type='integer'> 1760 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> AiryBiPrime </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> AiryAiPrime </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BesselY", "[", RowBox[List[FractionBox["14", "3"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["1760", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["4", "/", "3"]]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["9", " ", SuperscriptBox["z", "2"]]], "110"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]], "-", RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["14080", "-", RowBox[List["4320", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["81", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["AiryAiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]]]], "1760"]]], ")"]]]], RowBox[List["81", " ", SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["14", "/", "3"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.