Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselY






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselY[nu,z] > Series representations > Asymptotic series expansions > Expansions for any z in trigonometric form > Using trigonometric functions with branch cut-free arguments





http://functions.wolfram.com/03.03.06.0077.01









  


  










Input Form





BesselY[\[Nu], z] \[Proportional] (-((1 + I)/(E^((1/2) I (Pi \[Nu] + 2 z)) (2 Pi^(1/2) (-z)^(1/2))))) (E^(2 I z) ((2 Sqrt[-z^2])/z - I) - I (((-1)^\[Nu] Sqrt[-z^2])/z)) HypergeometricPFQ[{1/4 - \[Nu]/2, 3/4 - \[Nu]/2, 1/4 + \[Nu]/2, 3/4 + \[Nu]/2}, {1/2}, -(1/z^2)] + (((1 - I) (1 - 4 \[Nu]^2))/(E^((1/2) I (Pi \[Nu] + 2 z)) (16 Pi^(1/2) (-z)^(3/2)))) (E^(2 I z) ((2 Sqrt[-z^2])/z - I) + I (-1)^\[Nu] (Sqrt[-z^2]/z)) HypergeometricPFQ[ {3/4 - \[Nu]/2, 5/4 - \[Nu]/2, 3/4 + \[Nu]/2, 5/4 + \[Nu]/2}, {3/2}, -(1/z^2)] /; (Abs[z] -> Infinity) && Element[\[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BesselY", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", "\[Nu]"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]]], RowBox[List["2", SuperscriptBox["\[Pi]", RowBox[List["1", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["1", "/", "2"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"], "-", "\[ImaginaryI]"]], " ", ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["1", "4"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", "\[Nu]"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]]]], RowBox[List["16", SuperscriptBox["\[Pi]", RowBox[List["1", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", " ", RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"], "-", "\[ImaginaryI]"]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", FractionBox[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], "z"]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["5", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["5", "4"], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> Y </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mi> z </mi> </mfrac> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;4&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;4&quot;], &quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;3&quot;, &quot;4&quot;], &quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mi> z </mi> </mfrac> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;4&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[&quot;3&quot;, &quot;4&quot;], &quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;5&quot;, &quot;4&quot;], &quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;5&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#957; </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> BesselY </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <imaginaryi /> <apply> <plus /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='complex-cartesian'> 1 <sep /> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <imaginaryi /> <apply> <plus /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='rational'> 5 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 3 <sep /> 2 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <in /> <ci> &#957; </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BesselY", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", "\[Nu]"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"], "-", "\[ImaginaryI]"]], ")"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], ")"]]]], "z"]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["1", "4"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]]], "]"]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["-", "z"]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", "\[Nu]"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"], "-", "\[ImaginaryI]"]], ")"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Nu]"], " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["5", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["5", "4"], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]]], "]"]]]], RowBox[List["16", " ", SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.