Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselY






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselY[nu,z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving trigonometric functions > Involving cos > Power arguments





http://functions.wolfram.com/03.03.21.0036.01









  


  










Input Form





Integrate[Cos[b + a z^r] BesselY[\[Nu], a z^r], z] == (z ((1/((-1 + r \[Nu]) Gamma[1 - \[Nu]])) (4^\[Nu] Cos[b] Csc[Pi \[Nu]] HypergeometricPFQ[{1/4 - \[Nu]/2, 3/4 - \[Nu]/2, 1/(2 r) - \[Nu]/2}, {1/2, 1/2 - \[Nu], 1 - \[Nu], 1 + 1/(2 r) - \[Nu]/2}, (-a^2) z^(2 r)]) - (4^\[Nu] a z^r Csc[Pi \[Nu]] HypergeometricPFQ[{3/4 - \[Nu]/2, 5/4 - \[Nu]/2, 1/2 + 1/(2 r) - \[Nu]/2}, {3/2, 1 - \[Nu], 3/2 - \[Nu], 3/2 + 1/(2 r) - \[Nu]/2}, (-a^2) z^(2 r)] Sin[b])/ ((-1 + r (-1 + \[Nu])) Gamma[1 - \[Nu]]) + (1/Gamma[1 + \[Nu]]) ((a z^r)^(2 \[Nu]) Cot[Pi \[Nu]] ((1/(1 + r \[Nu])) (Cos[b] HypergeometricPFQ[{1/4 + \[Nu]/2, 3/4 + \[Nu]/2, 1/(2 r) + \[Nu]/2}, {1/2, 1 + 1/(2 r) + \[Nu]/2, 1/2 + \[Nu], 1 + \[Nu]}, (-a^2) z^(2 r)]) - (1/(1 + r + r \[Nu])) (a z^r HypergeometricPFQ[{3/4 + \[Nu]/2, 5/4 + \[Nu]/2, 1/2 + 1/(2 r) + \[Nu]/2}, {3/2, 3/2 + 1/(2 r) + \[Nu]/2, 1 + \[Nu], 3/2 + \[Nu]}, (-a^2) z^(2 r)] Sin[b])))))/(2^\[Nu] (a z^r)^\[Nu])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Cos", "[", RowBox[List["b", "+", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]], RowBox[List["BesselY", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]], " ", RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["r", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["4", "\[Nu]"], " ", RowBox[List["Cos", "[", "b", "]"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["1", RowBox[List["2", " ", "r"]]], "-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], ",", RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["4", "\[Nu]"], " ", "a", " ", SuperscriptBox["z", "r"], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["5", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List[FractionBox["3", "2"], "-", "\[Nu]"]], ",", RowBox[List[FractionBox["3", "2"], "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]], " ", RowBox[List["Sin", "[", "b", "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["r", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ")"]]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["1", "+", RowBox[List["r", " ", "\[Nu]"]]]]], RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "b", "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "4"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["1", RowBox[List["2", " ", "r"]]], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["1", "+", "r", "+", RowBox[List["r", " ", "\[Nu]"]]]]], RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["5", "4"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List[FractionBox["3", "2"], "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]], " ", RowBox[List["Sin", "[", "b", "]"]]]], ")"]]]]]], ")"]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> Y </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mn> 4 </mn> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> r </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 4 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;4&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;4&quot;], &quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;3&quot;, &quot;4&quot;], &quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;r&quot;]]], &quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;-&quot;, &quot;\[Nu]&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], &quot;+&quot;, FractionBox[&quot;1&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;r&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;a&quot;, &quot;2&quot;]]], &quot; &quot;, SuperscriptBox[&quot;z&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cot </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mrow> <mrow> <mi> r </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 4 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;4&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;1&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;1&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;r&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;a&quot;, &quot;2&quot;]]], &quot; &quot;, SuperscriptBox[&quot;z&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mi> r </mi> </mrow> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 4 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;4&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;5&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;1&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;1&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;a&quot;, &quot;2&quot;]]], &quot; &quot;, SuperscriptBox[&quot;z&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mn> 4 </mn> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> r </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 4 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;4&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[&quot;3&quot;, &quot;4&quot;], &quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;5&quot;, &quot;4&quot;], &quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;1&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;3&quot;, &quot;2&quot;], &quot;-&quot;, &quot;\[Nu]&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;1&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;a&quot;, &quot;2&quot;]]], &quot; &quot;, SuperscriptBox[&quot;z&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <cos /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <ci> b </ci> </apply> </apply> <apply> <ci> BesselY </ci> <ci> &#957; </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> z </ci> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <ci> &#957; </ci> </apply> <apply> <cos /> <ci> b </ci> </apply> <apply> <csc /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> r </ci> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <cot /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <cos /> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> r </ci> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> <apply> <sin /> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <ci> r </ci> </apply> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <ci> &#957; </ci> </apply> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> <apply> <csc /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <sin /> <ci> b </ci> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> r </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='rational'> 5 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["b_", "+", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], "]"]], " ", RowBox[List["BesselY", "[", RowBox[List["\[Nu]_", ",", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["4", "\[Nu]"], " ", RowBox[List["Cos", "[", "b", "]"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["1", RowBox[List["2", " ", "r"]]], "-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["1", "2"], "-", "\[Nu]"]], ",", RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["r", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["4", "\[Nu]"], " ", "a", " ", SuperscriptBox["z", "r"], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["3", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["5", "4"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List[FractionBox["3", "2"], "-", "\[Nu]"]], ",", RowBox[List[FractionBox["3", "2"], "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]], " ", RowBox[List["Sin", "[", "b", "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["r", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ")"]]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["Cos", "[", "b", "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "4"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["1", RowBox[List["2", " ", "r"]]], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["1", "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]]]], RowBox[List["1", "+", RowBox[List["r", " ", "\[Nu]"]]]]], "-", FractionBox[RowBox[List["a", " ", SuperscriptBox["z", "r"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["5", "4"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List[FractionBox["3", "2"], "+", FractionBox["1", RowBox[List["2", " ", "r"]]], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], "]"]], " ", RowBox[List["Sin", "[", "b", "]"]]]], RowBox[List["1", "+", "r", "+", RowBox[List["r", " ", "\[Nu]"]]]]]]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.