Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinBei






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinBei[z] > Series representations > Generalized power series > Expansions at z==0 > For small integer powers of the function





http://functions.wolfram.com/03.13.06.0015.01









  


  










Input Form





KelvinBei[z]^2 == (1/2) HypergeometricPFQ[{}, {1, 1, 1/2}, z^4/64] - (1/2) HypergeometricPFQ[{1/4, 3/4}, {1/2, 1/2, 1/2, 1, 1}, -(z^4/16)]










Standard Form





Cell[BoxData[RowBox[List[SuperscriptBox[RowBox[List["KelvinBei", "[", "z", "]"]], "2"], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "2"], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1", ",", FractionBox["1", "2"]]], "}"]], ",", FractionBox[SuperscriptBox["z", "4"], "64"]]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", "1", ",", "1"]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "16"]]]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <msup> <mrow> <mi> bei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 64 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;0&quot;], SubscriptBox[&quot;F&quot;, &quot;3&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[FractionBox[SuperscriptBox[&quot;z&quot;, &quot;4&quot;], &quot;64&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 5 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 16 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;5&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[SuperscriptBox[&quot;z&quot;, &quot;4&quot;], &quot;16&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <power /> <apply> <ci> KelvinBei </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <ci> HypergeometricPFQ </ci> <list /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </list> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 64 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 1 <sep /> 4 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 16 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox[RowBox[List["KelvinBei", "[", "z_", "]"]], "2"], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1", ",", FractionBox["1", "2"]]], "}"]], ",", FractionBox[SuperscriptBox["z", "4"], "64"]]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", "1", ",", "1"]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "16"]]]]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.