html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 KelvinBei

 http://functions.wolfram.com/03.13.06.0034.01

 Input Form

 KelvinBei[z] \[Proportional] (-((-1)^(3/4)/(2 Sqrt[2 Pi]))) (E^(z/Sqrt[2]) (E^((I z)/Sqrt[2])/Sqrt[(-1)^(3/4) z] - 1/(E^((I z)/Sqrt[2]) Sqrt[(-1)^(1/4) z])) + (-(E^((I z)/Sqrt[2])/Sqrt[(-(-1)^(1/4)) z]) + 1/(E^((I z)/Sqrt[2]) Sqrt[(-(-1)^(3/4)) z]))/E^(z/Sqrt[2]) - ((-1)^(3/4)/(8 z)) (E^(z/Sqrt[2]) (E^((I z)/Sqrt[2])/Sqrt[(-1)^(3/4) z] - I/(E^((I z)/Sqrt[2]) Sqrt[(-1)^(1/4) z])) + ((I E^((I z)/Sqrt[2]))/Sqrt[(-(-1)^(1/4)) z] - 1/(E^((I z)/Sqrt[2]) Sqrt[(-(-1)^(3/4)) z]))/E^(z/Sqrt[2])) - ((9 I)/(128 z^2)) (E^(z/Sqrt[2]) (E^((I z)/Sqrt[2])/Sqrt[(-1)^(3/4) z] + 1/(E^((I z)/Sqrt[2]) Sqrt[(-1)^(1/4) z])) + (E^((I z)/Sqrt[2])/Sqrt[(-(-1)^(1/4)) z] + 1/(E^((I z)/Sqrt[2]) Sqrt[(-(-1)^(3/4)) z]))/E^(z/Sqrt[2])) + ((75 (-1)^(1/4))/(1024 z^3)) ((-E^(z/Sqrt[2])) (E^((I z)/Sqrt[2])/Sqrt[(-1)^(3/4) z] + I/(E^((I z)/Sqrt[2]) Sqrt[(-1)^(1/4) z])) + ((I E^((I z)/Sqrt[2]))/Sqrt[(-(-1)^(1/4)) z] + 1/(E^((I z)/Sqrt[2]) Sqrt[(-(-1)^(3/4)) z]))/E^(z/Sqrt[2])) + \[Ellipsis]) /; (Abs[z] -> Infinity)

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinBei", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]]], "-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], " ", "z"]]]]]], ")"]]]], "-", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], RowBox[List["8", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]]], "-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], " ", "z"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List["9", " ", "\[ImaginaryI]", " "]], RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], " ", "z"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["75", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], RowBox[List["1024", " ", SuperscriptBox["z", "3"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], " ", "z"]]]]]], ")"]]]]]], ")"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]

 MathML Form

 bei ( z ) - 1 2 2 π ( - 1 ) 3 / 4 ( z 2 ( z 2 ( - 1 ) 3 / 4 z - - z 2 - 1 4 z ) + - z 2 ( - z 2 - ( - 1 ) 3 / 4 z - z 2 - - 1 4 z ) - ( - 1 ) 3 / 4 8 z ( z 2 ( z 2 ( - 1 ) 3 / 4 z - - z 2 - 1 4 z ) + - z 2 ( z 2 - - 1 4 z - - z 2 - ( - 1 ) 3 / 4 z ) ) - 9 128 z 2 ( z 2 ( z 2 ( - 1 ) 3 / 4 z + - z 2 - 1 4 z ) + - z 2 ( - z 2 - ( - 1 ) 3 / 4 z + z 2 - - 1 4 z ) ) + 75 - 1 4 1024 z 3 ( - z 2 ( z 2 - - 1 4 z + - z 2 - ( - 1 ) 3 / 4 z ) - z 2 ( z 2 ( - 1 ) 3 / 4 z + - z 2 - 1 4 z ) ) + ) /; ( "\[LeftBracketingBar]" z "\[RightBracketingBar]" "\[Rule]" ) Condition Proportional KelvinBei z -1 1 2 2 1 2 -1 -1 3 4 z 2 1 2 -1 z 2 1 2 -1 -1 3 4 z 1 2 -1 -1 -1 z 2 1 2 -1 -1 1 4 z 1 2 -1 -1 z 2 1 2 -1 -1 z 2 1 2 -1 -1 -1 3 4 z 1 2 -1 -1 z 2 1 2 -1 -1 -1 1 4 z 1 2 -1 -1 -1 3 4 8 z -1 z 2 1 2 -1 z 2 1 2 -1 -1 3 4 z 1 2 -1 -1 -1 z 2 1 2 -1 -1 1 4 z 1 2 -1 -1 z 2 1 2 -1 z 2 1 2 -1 -1 -1 1 4 z 1 2 -1 -1 -1 z 2 1 2 -1 -1 -1 3 4 z 1 2 -1 -1 9 128 z 2 -1 z 2 1 2 -1 z 2 1 2 -1 -1 3 4 z 1 2 -1 -1 z 2 1 2 -1 -1 1 4 z 1 2 -1 -1 z 2 1 2 -1 -1 z 2 1 2 -1 -1 -1 3 4 z 1 2 -1 z 2 1 2 -1 -1 -1 1 4 z 1 2 -1 75 -1 1 4 1024 z 3 -1 -1 z 2 1 2 -1 z 2 1 2 -1 -1 -1 1 4 z 1 2 -1 -1 z 2 1 2 -1 -1 -1 3 4 z 1 2 -1 -1 z 2 1 2 -1 z 2 1 2 -1 -1 3 4 z 1 2 -1 -1 z 2 1 2 -1 -1 1 4 z 1 2 -1 Rule z [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinBei", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]]], "-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], " ", "z"]]]]]], ")"]]]], "-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]]], "-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], " ", "z"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["8", " ", "z"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["9", " ", "\[ImaginaryI]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], " ", "z"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["75", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], " ", "z"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["1024", " ", SuperscriptBox["z", "3"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2007-05-02