Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinBei






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinBei[nu,z] > Series representations > Generalized power series > Expansions at z==0 > For the function itself > General case





http://functions.wolfram.com/03.17.06.0017.01









  


  










Input Form





KelvinBei[\[Nu], z] == (Sin[(3 Pi \[Nu])/4]/Gamma[1 + \[Nu]]) (z/2)^\[Nu] Sum[((-1)^k (z/4)^(4 k))/(Pochhammer[(\[Nu] + 1)/2, k] Pochhammer[1 + \[Nu]/2, k] Pochhammer[1/2, k] k!), {k, 0, Infinity}] + (Cos[(3 Pi \[Nu])/4]/Gamma[2 + \[Nu]]) (z/2)^(\[Nu] + 2) Sum[((-1)^k (z/4)^(4 k))/(Pochhammer[1 + \[Nu]/2, k] Pochhammer[(\[Nu] + 3)/2, k] Pochhammer[3/2, k] k!), {k, 0, Infinity}] /; !(Element[-\[Nu], Integers] && -\[Nu] > 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]], SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], "\[Nu]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], SuperscriptBox[RowBox[List["(", FractionBox["z", "4"], ")"]], RowBox[List["4", " ", "k"]]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox[RowBox[List["\[Nu]", "+", "1"]], "2"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], ",", "k"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], RowBox[List["k", "!"]]]]]]]]], "+", RowBox[List[FractionBox[RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], RowBox[List["Gamma", "[", RowBox[List["2", "+", "\[Nu]"]], "]"]]], SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["\[Nu]", "+", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], SuperscriptBox[RowBox[List["(", FractionBox["z", "4"], ")"]], RowBox[List["4", " ", "k"]]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox[RowBox[List["\[Nu]", "+", "3"]], "2"], ",", "k"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]], RowBox[List["k", "!"]]]]]]]]]]]]], "/;", RowBox[List["Not", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "\[Nu]"]], ">", "0"]]]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> bei </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;3&quot;]], &quot;2&quot;], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> &#8713; </mo> <semantics> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> <annotation encoding='Mathematica'> TagBox[SuperscriptBox[&quot;\[DoubleStruckCapitalN]&quot;, &quot;+&quot;], Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> KelvinBei </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 3 <sep /> 2 </cn> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <sin /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#957; </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], "\[Nu]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox[RowBox[List["(", FractionBox["z", "4"], ")"]], RowBox[List["4", " ", "k"]]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox[RowBox[List["\[Nu]", "+", "1"]], "2"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]], "+", FractionBox[RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["\[Nu]", "+", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox[RowBox[List["(", FractionBox["z", "4"], ")"]], RowBox[List["4", " ", "k"]]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox[RowBox[List["\[Nu]", "+", "3"]], "2"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], RowBox[List["Gamma", "[", RowBox[List["2", "+", "\[Nu]"]], "]"]]]]], "/;", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "\[Nu]"]], ">", "0"]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.