Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinBei






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinBei[nu,z] > Identities > Recurrence identities > Distant neighbors > Decreasing





http://functions.wolfram.com/03.17.17.0008.01









  


  










Input Form





KelvinBei[\[Nu], z] == Pochhammer[1 - \[Nu], n - 1] ((n - \[Nu]) Sum[(((n - k)! (-1)^k 2^(n - 2 k) z^(2 k - n))/ (k! (n - 2 k)! Pochhammer[1 - \[Nu], k] Pochhammer[\[Nu] - n, k])) (Cos[((2 k + n)/4) Pi] KelvinBei[-n + \[Nu], z] + KelvinBer[-n + \[Nu], z] Sin[((2 k + n)/4) Pi]), {k, 0, Floor[n/2]}] - Sum[(((n - k - 1)! (-1)^k 2^(n - 2 k - 1) z^(2 k - n + 1))/ (k! (n - 2 k - 1)! Pochhammer[1 - \[Nu], k] Pochhammer[1 + \[Nu] - n, k])) (Cos[((2 k + n - 1)/4) Pi] KelvinBei[-1 - n + \[Nu], z] + Sin[((2 k + n - 1)/4) Pi] KelvinBer[-1 - n + \[Nu], z]), {k, 0, Floor[(n - 1)/2]}]) /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["n", "-", "1"]]]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "\[Nu]"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List["n", "/", "2"]], "]"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], SuperscriptBox["2", RowBox[List["n", "-", RowBox[List["2", "k"]]]]], SuperscriptBox["z", RowBox[List[RowBox[List["2", "k"]], "-", "n"]]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", RowBox[List["2", " ", "k"]]]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Nu]", "-", "n"]], ",", "k"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "n"]], "4"], " ", "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["-", "n"]], "+", "\[Nu]"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["-", "n"]], "+", "\[Nu]"]], ",", "z"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "n"]], "4"], " ", "\[Pi]"]], "]"]]]]]], ")"]]]]]]]], "-", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "/", "2"]], "]"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k", "-", "1"]], ")"]], "!"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], SuperscriptBox["2", RowBox[List["n", "-", RowBox[List["2", "k"]], "-", "1"]]], SuperscriptBox["z", RowBox[List[RowBox[List["2", "k"]], "-", "n", "+", "1"]]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", RowBox[List["2", " ", "k"]], "-", "1"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]", "-", "n"]], ",", "k"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "n", "-", "1"]], "4"], "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "n", "+", "\[Nu]"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["Sin", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "n", "-", "1"]], "4"], " ", "\[Pi]"]], "]"]], RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "n", "+", "\[Nu]"]], ",", "z"]], "]"]]]]]], ")"]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["Element", "[", RowBox[List["n", ",", "Integers"]], "]"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> bei </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]], RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;1&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Nu]&quot;, &quot;-&quot;, &quot;n&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> bei </mi> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> n </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> ber </mi> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> n </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;-&quot;, &quot;n&quot;]], &quot;+&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> bei </mi> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> ber </mi> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> KelvinBei </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> n </ci> </apply> <pi /> </apply> </apply> <apply> <ci> KelvinBei </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> n </ci> </apply> <pi /> </apply> </apply> <apply> <ci> KelvinBer </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <pi /> </apply> </apply> <apply> <ci> KelvinBei </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <pi /> </apply> </apply> <apply> <ci> KelvinBer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["n", "-", "1"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "\[Nu]"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List["n", "-", RowBox[List["2", " ", "k"]]]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", " ", "k"]], "-", "n"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "n"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["-", "n"]], "+", "\[Nu]"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["-", "n"]], "+", "\[Nu]"]], ",", "z"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "n"]], ")"]], " ", "\[Pi]"]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", RowBox[List["2", " ", "k"]]]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Nu]", "-", "n"]], ",", "k"]], "]"]]]]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["n", "-", "1"]], "2"], "]"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k", "-", "1"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List["n", "-", RowBox[List["2", " ", "k"]], "-", "1"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", " ", "k"]], "-", "n", "+", "1"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "n", "-", "1"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "n", "+", "\[Nu]"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "n", "-", "1"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "n", "+", "\[Nu]"]], ",", "z"]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", RowBox[List["2", " ", "k"]], "-", "1"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]", "-", "n"]], ",", "k"]], "]"]]]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.