|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.17.26.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KelvinBei[\[Nu], z] == (1/Gamma[\[Nu] + 1]) Sin[(3 Pi \[Nu])/4] (z/2)^\[Nu]
HypergeometricPFQ[{}, {1/2, (\[Nu] + 1)/2, \[Nu]/2 + 1}, -(z^4/256)] +
(1/Gamma[\[Nu] + 2]) Cos[(3 Pi \[Nu])/4] (z/2)^(\[Nu] + 2)
HypergeometricPFQ[{}, {3/2, (\[Nu] + 3)/2, \[Nu]/2 + 1}, -(z^4/256)] /;
!(Element[-\[Nu], Integers] && -\[Nu] > 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]]], RowBox[List["Sin", "[", FractionBox[RowBox[List["3", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], "\[Nu]"], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["\[Nu]", "+", "1"]], "2"], ",", RowBox[List[FractionBox["\[Nu]", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "2"]], "]"]]], RowBox[List["Cos", "[", FractionBox[RowBox[List["3", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["\[Nu]", "+", "2"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", FractionBox[RowBox[List["\[Nu]", "+", "3"]], "2"], ",", RowBox[List[FractionBox["\[Nu]", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]]]]]], "/;", RowBox[List["Not", "[", RowBox[List[RowBox[List["Element", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "Integers"]], "]"]], "\[And]", RowBox[List[RowBox[List["-", "\[Nu]"]], ">", "0"]]]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> bei </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 256 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["\[Nu]", "+", "3"]], "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Nu]", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> ν </mi> </msup> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 256 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox[RowBox[List["\[Nu]", "+", "1"]], "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Nu]", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mtext> ​ </mtext> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ∉ </mo> <msup> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> KelvinBei </ci> <ci> ν </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list /> <list> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 256 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <sin /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> ν </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list /> <list> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 256 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <apply> <ci> SuperPlus </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], "\[Nu]"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["\[Nu]", "+", "1"]], "2"], ",", RowBox[List[FractionBox["\[Nu]", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]]], "+", FractionBox[RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["\[Nu]", "+", "2"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", FractionBox[RowBox[List["\[Nu]", "+", "3"]], "2"], ",", RowBox[List[FractionBox["\[Nu]", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "2"]], "]"]]]]], "/;", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "\[Nu]"]], ">", "0"]]]], ")"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|