Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinBer






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinBer[z] > Series representations > Asymptotic series expansions > Expansions inside Stokes sectors > Expansions containing z->-infinity > In exponential form ||| In exponential form





http://functions.wolfram.com/03.14.06.0026.01









  


  










Input Form





KelvinBer[z] \[Proportional] (1/(2 Sqrt[2 Pi] Sqrt[-z])) (E^(z/Sqrt[2]) (-E^((3 I Pi)/8 - (I z)/Sqrt[2]) + E^((3 I Pi)/8 + (I z)/Sqrt[2])) + (E^(-((I Pi)/8) - (I z)/Sqrt[2]) + E^((I Pi)/8 + (I z)/Sqrt[2]))/ E^(z/Sqrt[2]) - (E^(z/Sqrt[2]) (E^(-((I Pi)/8) - (I z)/Sqrt[2]) - E^((I Pi)/8 + (I z)/Sqrt[2])) + (E^(-((3 I Pi)/8) - (I z)/Sqrt[2]) + E^((3 I Pi)/8 + (I z)/Sqrt[2]))/E^(z/Sqrt[2]))/(8 z) + (9 I (E^(z/Sqrt[2]) (-E^((3 I Pi)/8 - (I z)/Sqrt[2]) - E^((3 I Pi)/8 + (I z)/Sqrt[2])) + (-E^(-((I Pi)/8) - (I z)/Sqrt[2]) + E^((I Pi)/8 + (I z)/Sqrt[2]))/ E^(z/Sqrt[2])))/(128 z^2) - (75 I (E^(z/Sqrt[2]) (E^(-((I Pi)/8) - (I z)/Sqrt[2]) + E^((I Pi)/8 + (I z)/Sqrt[2])) + (-E^(-((3 I Pi)/8) - (I z)/Sqrt[2]) + E^((3 I Pi)/8 + (I z)/Sqrt[2]))/ E^(z/Sqrt[2])))/(1024 z^3) + \[Ellipsis]) /; Inequality[Pi/2, Less, Arg[z], LessEqual, Pi] && (Abs[z] -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinBer", "[", "z", "]"]], "\[Proportional]", RowBox[List[FractionBox["1", RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List["-", "z"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "8"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "8"]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]], "-", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "8"]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], "-", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "8"]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]]]], RowBox[List["8", " ", "z"]]], "+", FractionBox[RowBox[List["9", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "8"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], "-", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "8"]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]]]], ")"]]]], RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], "-", FractionBox[RowBox[List["75", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "8"]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "8"]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]]]], ")"]]]], RowBox[List["1024", " ", SuperscriptBox["z", "3"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "\[Pi]"]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> ber </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 8 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 8 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> </mrow> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 8 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 8 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 8 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mtext> </mtext> <mi> &#8520; </mi> </mrow> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> </mrow> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 8 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 8 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> </mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 8 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 75 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mtext> </mtext> </mrow> <mrow> <mn> 1024 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 8 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> </mrow> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 8 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> &lt; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mi> &#960; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> KelvinBer </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <times /> <imaginaryi /> <pi /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <times /> <imaginaryi /> <pi /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 9 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <times /> <imaginaryi /> <pi /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 75 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 1024 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <times /> <imaginaryi /> <pi /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Inequality </ci> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <lt /> <apply> <arg /> <ci> z </ci> </apply> <leq /> <pi /> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinBer", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "8"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "8"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], ")"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]], "-", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "8"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], ")"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], "-", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "8"]]], " ", RowBox[List["(", RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], ")"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]]]], RowBox[List["8", " ", "z"]]], "+", FractionBox[RowBox[List["9", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "8"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], "-", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "8"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], ")"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]]]], ")"]]]], RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], "-", FractionBox[RowBox[List["75", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "8"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], ")"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "8"]]], " ", RowBox[List["(", RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], ")"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]"]], "8"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]]]]]]], ")"]]]]]], ")"]]]], RowBox[List["1024", " ", SuperscriptBox["z", "3"]]]], "+", "\[Ellipsis]"]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox[RowBox[List["-", "z"]]]]]], "/;", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "\[Pi]"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.