Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinBer






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinBer[nu,z] > Series representations > Generalized power series > Expansions at z==0 > For the function itself > General case





http://functions.wolfram.com/03.18.06.0021.01









  


  










Input Form





KelvinBer[\[Nu], z] \[Proportional] Piecewise[{{(((-1)^(\[Nu]/4) 2^\[Nu])/(z^\[Nu] (-\[Nu])!)) (1 + O[z^2]), Element[\[Nu]/4, Integers] && \[Nu] < 0}, {(((-1)^((\[Nu] - 1)/4) 2^(\[Nu] - 1/2))/(z^\[Nu] (-\[Nu])!)) (1 + O[z^2]), Element[(\[Nu] - 1)/4, Integers] && \[Nu] < 0}, {(((-1)^((\[Nu] + 2)/4) 2^(\[Nu] - 2) z^(2 - \[Nu]))/(1 - \[Nu])!) (1 + O[z^2]), Element[(\[Nu] - 2)/4, Integers] && \[Nu] < 0}, {(((-1)^((\[Nu] + 1)/4) 2^(\[Nu] - 1/2))/(z^\[Nu] (-\[Nu])!)) (1 + O[z^2]), Element[(\[Nu] - 3)/4, Integers] && \[Nu] < 0}}, ((z^\[Nu] Cos[(3 Pi \[Nu])/4])/(2^\[Nu] Gamma[1 + \[Nu]])) (1 + O[z^2])]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["KelvinBer", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List["Piecewise", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["\[Nu]", "/", "4"]]], SuperscriptBox["2", "\[Nu]"], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " "]], RowBox[List[RowBox[List["(", RowBox[List["-", "\[Nu]"]], ")"]], "!"]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", SuperscriptBox["z", "2"], "]"]]]], ")"]]]], ",", RowBox[List[RowBox[List[FractionBox["\[Nu]", "4"], "\[Element]", "Integers"]], "&&", " ", RowBox[List["\[Nu]", "<", "0"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["\[Nu]", "-", "1"]], "4"]], " ", SuperscriptBox["2", RowBox[List["\[Nu]", "-", FractionBox["1", "2"]]]], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]]]], RowBox[List[RowBox[List["(", RowBox[List["-", "\[Nu]"]], ")"]], "!"]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", SuperscriptBox["z", "2"], "]"]]]], ")"]]]], ",", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Nu]", "-", "1"]], "4"], "\[Element]", "Integers"]], "&&", " ", RowBox[List["\[Nu]", "<", "0"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["(", RowBox[List["\[Nu]", "+", "2"]], ")"]], "4"]], SuperscriptBox["2", RowBox[List["\[Nu]", "-", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", "-", "\[Nu]"]]], " "]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Nu]"]], ")"]], "!"]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", SuperscriptBox["z", "2"], "]"]]]], ")"]]]], ",", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Nu]", "-", "2"]], "4"], "\[Element]", "Integers"]], "&&", " ", RowBox[List["\[Nu]", "<", "0"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["\[Nu]", "+", "1"]], "4"]], " ", SuperscriptBox["2", RowBox[List["\[Nu]", "-", FractionBox["1", "2"]]]], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]]]], RowBox[List[RowBox[List["(", RowBox[List["-", "\[Nu]"]], ")"]], "!"]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", SuperscriptBox["z", "2"], "]"]]]], ")"]]]], ",", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Nu]", "-", "3"]], "4"], "\[Element]", "Integers"]], "&&", " ", RowBox[List["\[Nu]", "<", "0"]]]]]], "}"]]]], "}"]], ",", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", SuperscriptBox["z", "2"], "]"]]]], ")"]]]]]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> ber </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mo> &#62305; </mo> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mfrac> <mi> &#957; </mi> <mn> 4 </mn> </mfrac> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#957; </mi> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mi> &#957; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mfrac> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#957; </mi> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 4 </mn> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mn> 4 </mn> </mfrac> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#957; </mi> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mi> &#957; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mn> 4 </mn> </mfrac> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#957; </mi> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <semantics> <mi> True </mi> <annotation encoding='Mathematica'> TagBox[&quot;True&quot;, &quot;PiecewiseDefault&quot;, Rule[AutoDelete, False], Rule[DeletionWarning, True]] </annotation> </semantics> </mtd> </mtr> </mtable> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <ci> KelvinBer </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <piecewise> <piece> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <integers /> </apply> <apply> <lt /> <ci> &#957; </ci> <cn type='integer'> 0 </cn> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <integers /> </apply> <apply> <lt /> <ci> &#957; </ci> <cn type='integer'> 0 </cn> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <integers /> </apply> <apply> <lt /> <ci> &#957; </ci> <cn type='integer'> 0 </cn> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -3 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <integers /> </apply> <apply> <lt /> <ci> &#957; </ci> <cn type='integer'> 0 </cn> </apply> </apply> </piece> <otherwise> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> &#957; </ci> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </otherwise> </piecewise> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinBer", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["\[Piecewise]", GridBox[List[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["\[Nu]", "/", "4"]]], " ", SuperscriptBox["2", "\[Nu]"], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["O", "[", "z", "]"]], "2"]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["-", "\[Nu]"]], ")"]], "!"]]], RowBox[List[RowBox[List[FractionBox["\[Nu]", "4"], "\[Element]", "Integers"]], "&&", RowBox[List["\[Nu]", "<", "0"]]]]], List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["\[Nu]", "-", "1"]], "4"]], " ", SuperscriptBox["2", RowBox[List["\[Nu]", "-", FractionBox["1", "2"]]]], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["O", "[", "z", "]"]], "2"]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["-", "\[Nu]"]], ")"]], "!"]]], RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Nu]", "-", "1"]], "4"], "\[Element]", "Integers"]], "&&", RowBox[List["\[Nu]", "<", "0"]]]]], List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["\[Nu]", "+", "2"]], "4"]], " ", SuperscriptBox["2", RowBox[List["\[Nu]", "-", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", "-", "\[Nu]"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["O", "[", "z", "]"]], "2"]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Nu]"]], ")"]], "!"]]], RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Nu]", "-", "2"]], "4"], "\[Element]", "Integers"]], "&&", RowBox[List["\[Nu]", "<", "0"]]]]], List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["\[Nu]", "+", "1"]], "4"]], " ", SuperscriptBox["2", RowBox[List["\[Nu]", "-", FractionBox["1", "2"]]]], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["O", "[", "z", "]"]], "2"]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["-", "\[Nu]"]], ")"]], "!"]]], RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Nu]", "-", "3"]], "4"], "\[Element]", "Integers"]], "&&", RowBox[List["\[Nu]", "<", "0"]]]]], List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["O", "[", "z", "]"]], "2"]]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]], TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]]]], Rule[ColumnAlignments, List[Left]], Rule[ColumnSpacings, 1.2`], Rule[ColumnWidths, Automatic]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.