html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 KelvinBer

 http://functions.wolfram.com/03.18.06.0055.01

 Input Form

 KelvinBer[\[Nu], z] \[Proportional] Piecewise[{{(1/(2 Sqrt[2 Pi] Sqrt[z])) ((-1)^(1/8) E^((-(-1)^(1/4)) z - (I Pi \[Nu])/2) (E^(Sqrt[2] z) + (-1)^(1/4) E^(2 I Pi \[Nu]) - (-1)^(3/4) E^(2 (-1)^(1/4) z + I Pi \[Nu]) + I E^(I Sqrt[2] z + I Pi \[Nu]))), Inequality[-(1/4), Less, Arg[z]/Pi, LessEqual, 1/4]}, {(1/(2 Sqrt[2 Pi] Sqrt[z])) ((-1)^(1/8) E^((-(-1)^(1/4)) z - (I Pi \[Nu])/2) (E^(Sqrt[2] z) + (-1)^(1/4) E^(2 I Pi \[Nu]) + I E^(I Sqrt[2] z + I Pi \[Nu]) + (-1)^(3/4) E^(2 (-1)^(1/4) z + 3 I Pi \[Nu]))), Inequality[1/4, Less, Arg[z]/Pi, LessEqual, 3/4]}, {(1/(2 Sqrt[2 Pi] Sqrt[z])) ((-1)^(1/8) E^((-(-1)^(1/4)) z + (I Pi \[Nu])/2) (I E^(I Sqrt[2] z) + (-1)^(1/4) E^(I Pi \[Nu]) - E^(Sqrt[2] z + I Pi \[Nu]) + (-1)^(3/4) E^(2 (-1)^(1/4) z + 2 I Pi \[Nu]))), Arg[z]/Pi > 3/4}, {(1/(2 Sqrt[2 Pi] Sqrt[z])) ((-1)^(1/8) E^((-(-1)^(1/4)) z - (3 I Pi \[Nu])/2) ((-I) E^(I Sqrt[2] z) + (-1)^(1/4) E^(3 I Pi \[Nu]) + E^(Sqrt[2] z + I Pi \[Nu]) - (-1)^(3/4) E^(2 (-1)^(1/4) z + 2 I Pi \[Nu]))), Inequality[-(3/4), Less, Arg[z]/Pi, LessEqual, -(1/4)]}}, (1/(2 Sqrt[2 Pi] Sqrt[z])) ((-1)^(1/8) E^((-(-1)^(1/4)) z - (3 I Pi \[Nu])/2) ((-I) E^(I Sqrt[2] z) - (-1)^(1/4) E^(I Pi \[Nu]) + E^(Sqrt[2] z + I Pi \[Nu]) - (-1)^(3/4) E^(2 (-1)^(1/4) z + 2 I Pi \[Nu])))] /; (Abs[z] -> Infinity)

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinBer", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List["Piecewise", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox["z"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]]]]]], ")"]]]]]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "<", FractionBox[RowBox[List["Arg", "[", "z", "]"]], "\[Pi]"], "\[LessEqual]", FractionBox["1", "4"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox["z"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], "+", RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]]]]]], ")"]]]]]], ",", RowBox[List[FractionBox["1", "4"], "<", FractionBox[RowBox[List["Arg", "[", "z", "]"]], "\[Pi]"], "\[LessEqual]", FractionBox["3", "4"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox["z"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SqrtBox["2"], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]]]]]], ")"]]]]]], ",", RowBox[List[FractionBox[RowBox[List["Arg", "[", "z", "]"]], "\[Pi]"], ">", FractionBox["3", "4"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox["z"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "-", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SqrtBox["2"], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]]]]]], ")"]]]]]], ",", RowBox[List[RowBox[List["-", FractionBox["3", "4"]]], "<", FractionBox[RowBox[List["Arg", "[", "z", "]"]], "\[Pi]"], "\[LessEqual]", RowBox[List["-", FractionBox["1", "4"]]]]]]], "}"]]]], "}"]], ",", RowBox[List[FractionBox["1", RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox["z"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "-", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SqrtBox["2"], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]]]]]], ")"]]]]]]]], "]"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]

 MathML Form

 ber ν ( z ) - 1 8 - - 1 4 z - π ν 2 ( 2 z + - 1 4 2 π ν - ( - 1 ) 3 / 4 2 - 1 4 z + π ν + 2 z + π ν ) 2 2 π z - 1 4 < arg ( z ) π 1 4 - 1 8 - - 1 4 z - π ν 2 ( 2 z + - 1 4 2 π ν + 2 z + π ν + ( - 1 ) 3 / 4 2 - 1 4 z + 3 π ν ) 2 2 π z 1 4 < arg ( z ) π 3 4 - 1 8 π ν 2 - - 1 4 z ( 2 z + - 1 4 π ν - 2 z + π ν + ( - 1 ) 3 / 4 2 - 1 4 z + 2 π ν ) 2 2 π z arg ( z ) π > 3 4 - 1 8 - - 1 4 z - 3 π ν 2 ( - 2 z + - 1 4 3 π ν + 2 z + π ν - ( - 1 ) 3 / 4 2 - 1 4 z + 2 π ν ) 2 2 π z - 3 4 < arg ( z ) π - 1 4 - 1 8 - - 1 4 z - 3 π ν 2 ( - 2 z - - 1 4 π ν + 2 z + π ν - ( - 1 ) 3 / 4 2 - 1 4 z + 2 π ν ) 2 2 π z True TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]] /; ( "\[LeftBracketingBar]" z "\[RightBracketingBar]" "\[Rule]" ) Condition Proportional KelvinBer ν z -1 1 8 -1 -1 1 4 z -1 ν 2 -1 2 1 2 z -1 1 4 2 ν -1 -1 3 4 2 -1 1 4 z ν 2 1 2 z ν 2 2 1 2 z 1 2 -1 Inequality -1 1 4 z -1 1 4 -1 1 8 -1 -1 1 4 z -1 ν 2 -1 2 1 2 z -1 1 4 2 ν 2 1 2 z ν -1 3 4 2 -1 1 4 z 3 ν 2 2 1 2 z 1 2 -1 Inequality 1 4 z -1 3 4 -1 1 8 ν 2 -1 -1 -1 1 4 z 2 1 2 z -1 1 4 ν -1 2 1 2 z ν -1 3 4 2 -1 1 4 z 2 ν 2 2 1 2 z 1 2 -1 z -1 3 4 -1 1 8 -1 -1 1 4 z -1 3 ν 2 -1 -1 2 1 2 z -1 1 4 3 ν 2 1 2 z ν -1 -1 3 4 2 -1 1 4 z 2 ν 2 2 1 2 z 1 2 -1 Inequality -1 3 4 z -1 -1 1 4 -1 1 8 -1 -1 1 4 z -1 3 ν 2 -1 -1 2 1 2 z -1 -1 1 4 ν 2 1 2 z ν -1 -1 3 4 2 -1 1 4 z 2 ν 2 2 1 2 z 1 2 -1 Rule z [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinBer", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[Piecewise]", GridBox[List[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox["z"]]]], RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "<", FractionBox[RowBox[List["Arg", "[", "z", "]"]], "\[Pi]"], "\[LessEqual]", FractionBox["1", "4"]]]], List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["2"], " ", "z"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], "+", RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox["z"]]]], RowBox[List[FractionBox["1", "4"], "<", FractionBox[RowBox[List["Arg", "[", "z", "]"]], "\[Pi]"], "\[LessEqual]", FractionBox["3", "4"]]]], List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SqrtBox["2"], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox["z"]]]], RowBox[List[FractionBox[RowBox[List["Arg", "[", "z", "]"]], "\[Pi]"], ">", FractionBox["3", "4"]]]], List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "-", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SqrtBox["2"], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox["z"]]]], RowBox[List[RowBox[List["-", FractionBox["3", "4"]]], "<", FractionBox[RowBox[List["Arg", "[", "z", "]"]], "\[Pi]"], "\[LessEqual]", RowBox[List["-", FractionBox["1", "4"]]]]]], List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "-", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SqrtBox["2"], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", SqrtBox["z"]]]], TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]]]], Rule[ColumnAlignments, List[Left]], Rule[ColumnSpacings, 1.2`], Rule[ColumnWidths, Automatic]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2007-05-02