Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinBer






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinBer[nu,z] > Integral representations > On the real axis > Of the direct function





http://functions.wolfram.com/03.18.07.0004.01









  


  










Input Form





KelvinBer[n, z] == (1/Pi) Integrate[((Cos[(n Pi)/2] Cos[(z Cos[t])/Sqrt[2]] - Sin[(n Pi)/2] Sin[(z Cos[t])/Sqrt[2]]) Cos[n t])/ E^((z Cos[t])/Sqrt[2]), {t, 0, Pi}] /; Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinBer", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "\[Pi]"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["z", " ", RowBox[List["Cos", "[", "t", "]"]]]], SqrtBox["2"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"], "]"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["z", " ", RowBox[List["Cos", "[", "t", "]"]]]], SqrtBox["2"]], "]"]]]], "-", RowBox[List[RowBox[List["Sin", "[", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"], "]"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["z", " ", RowBox[List["Cos", "[", "t", "]"]]]], SqrtBox["2"]], "]"]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["n", " ", "t"]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> ber </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> &#960; </mi> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#960; </mi> </msubsup> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> KelvinBer </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <pi /> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <cos /> <ci> t </ci> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <ci> n </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> z </ci> <apply> <cos /> <ci> t </ci> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <sin /> <apply> <times /> <ci> n </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> z </ci> <apply> <cos /> <ci> t </ci> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> n </ci> <ci> t </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinBer", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["z", " ", RowBox[List["Cos", "[", "t", "]"]]]], SqrtBox["2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"], "]"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["z", " ", RowBox[List["Cos", "[", "t", "]"]]]], SqrtBox["2"]], "]"]]]], "-", RowBox[List[RowBox[List["Sin", "[", FractionBox[RowBox[List["n", " ", "\[Pi]"]], "2"], "]"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["z", " ", RowBox[List["Cos", "[", "t", "]"]]]], SqrtBox["2"]], "]"]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["n", " ", "t"]], "]"]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Pi]"], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.