Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinKei






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinKei[nu,z] > Specific values > Specialized values > For fixed z > Explicit rational nu





http://functions.wolfram.com/03.19.03.0030.01









  


  










Input Form





KelvinKei[8/3, z] == ((1 - I)/(216 2^(5/6) 3^(1/6) z^(11/3))) (-1)^(1/12) Pi (90 3^(1/3) z^2 (2^(2/3) (1 + I Sqrt[3]) z^(1/3) - (1 - I) (I + Sqrt[3]) ((1 + I) z)^(1/3)) AiryAi[(-(1/2)) 3^(2/3) ((1 + I) z)^(2/3)] + (90 - 90 I) 3^(1/3) z^2 ((1 + I) 2^(2/3) z^(1/3) + (I + Sqrt[3]) ((1 + I) z)^(1/3)) AiryAi[(1/2) 3^(2/3) ((1 + I) z)^(2/3)] + 3 I (-80 (I + Sqrt[3]) z + 36 (-1)^(2/3) z^3 + 40 2^(2/3) (1 + I Sqrt[3]) z^(1/3) ((1 + I) z)^(2/3) + 9 2^(2/3) (-I + Sqrt[3]) z^(7/3) ((1 + I) z)^(2/3)) AiryAiPrime[(-(1/2)) 3^(2/3) ((1 + I) z)^(2/3)] - 6 (40 (1 - I Sqrt[3]) z + 18 (-1)^(1/6) z^3 - 40 I 2^(2/3) z^(1/3) ((1 + I) z)^(2/3) + 9 2^(2/3) z^(7/3) ((1 + I) z)^(2/3)) AiryAiPrime[(1/2) 3^(2/3) ((1 + I) z)^(2/3)] + (30 - 30 I) 3^(1/3) z^2 (2 (-1)^(7/12) 2^(1/6) Sqrt[3] z^(1/3) + (3 + I Sqrt[3]) ((1 + I) z)^(1/3)) AiryBi[(-(1/2)) 3^(2/3) ((1 + I) z)^(2/3)] + (30 - 30 I) 3^(1/3) z^2 ((1 + I) 2^(2/3) Sqrt[3] z^(1/3) + (-3 - I Sqrt[3]) ((1 + I) z)^(1/3)) AiryBi[(1/2) 3^(2/3) ((1 + I) z)^(2/3)] - I z^(1/3) (-160 (-1)^(1/6) Sqrt[3] z^(2/3) + 36 (-1)^(2/3) Sqrt[3] z^(8/3) - 40 2^(2/3) (3 I + Sqrt[3]) ((1 + I) z)^(2/3) + (9 (3 I + Sqrt[3]) ((1 + I) z)^(8/3))/2^(1/3)) AiryBiPrime[(-(1/2)) 3^(2/3) ((1 + I) z)^(2/3)] - 2 I Sqrt[3] z^(1/3) (80 (-1)^(1/6) z^(2/3) + 18 (-1)^(2/3) z^(8/3) - 40 2^(2/3) ((1 + I) z)^(2/3) - 9 I 2^(2/3) z^2 ((1 + I) z)^(2/3)) AiryBiPrime[(1/2) 3^(2/3) ((1 + I) z)^(2/3)])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["KelvinKei", "[", RowBox[List[FractionBox["8", "3"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["1", "-", "\[ImaginaryI]"]], RowBox[List["216", " ", SuperscriptBox["2", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["11", "/", "3"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["90", " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[ImaginaryI]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["90", "-", RowBox[List["90", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAi", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List["3", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "80"]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]], " ", "z"]], "+", RowBox[List["36", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["40", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["9", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["7", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "-", RowBox[List["6", " ", RowBox[List["(", RowBox[List[RowBox[List["40", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", "z"]], "+", RowBox[List["18", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["40", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["9", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["7", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["30", "-", RowBox[List["30", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "12"]]], " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["30", "-", RowBox[List["30", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryBi", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "160"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "6"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["36", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]]]], "-", RowBox[List["40", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", FractionBox[RowBox[List["9", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["8", "/", "3"]]]]], SuperscriptBox["2", RowBox[List["1", "/", "3"]]]]]], ")"]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["80", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["18", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]]]], "-", RowBox[List["40", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "-", RowBox[List["9", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> kei </mi> <mfrac> <mn> 8 </mn> <mn> 3 </mn> </mfrac> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 12 </mn> </mroot> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 216 </mn> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 80 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 6 </mn> </mroot> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 18 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 8 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 40 </mn> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> Bi </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 160 </mn> </mrow> <mo> &#8290; </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 6 </mn> </mroot> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 8 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 40 </mn> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 8 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> Bi </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <mroot> <mn> 3 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 90 </mn> <mo> - </mo> <mrow> <mn> 90 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 3 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Ai </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 90 </mn> <mo> &#8290; </mo> <mroot> <mn> 3 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 3 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Ai </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mroot> <mn> 3 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 30 </mn> <mo> - </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 3 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Bi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mroot> <mn> 3 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 30 </mn> <mo> - </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 12 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mn> 2 </mn> <mn> 6 </mn> </mroot> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 3 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Bi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 40 </mn> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 18 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 6 </mn> </mroot> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> Ai </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 40 </mn> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 80 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> Ai </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> KelvinKei </ci> <cn type='rational'> 8 <sep /> 3 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='complex-cartesian'> 1 <sep /> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 12 </cn> </apply> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 216 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 5 <sep /> 6 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 80 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 18 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 8 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> AiryBiPrime </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -160 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 8 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 8 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> AiryBiPrime </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='complex-cartesian'> 90 <sep /> -90 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <ci> AiryAi </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 90 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='complex-cartesian'> 1 <sep /> -1 </cn> <apply> <plus /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> AiryAi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='complex-cartesian'> 30 <sep /> -30 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> -3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <ci> AiryBi </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='complex-cartesian'> 30 <sep /> -30 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 12 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <ci> AiryBi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -40 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 18 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> AiryAiPrime </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 80 </cn> <apply> <plus /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> AiryAiPrime </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKei", "[", RowBox[List[FractionBox["8", "3"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "12"]]], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["90", " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[ImaginaryI]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["90", "-", RowBox[List["90", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAi", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List["3", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "80"]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]], " ", "z"]], "+", RowBox[List["36", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["40", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["9", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["7", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "-", RowBox[List["6", " ", RowBox[List["(", RowBox[List[RowBox[List["40", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", "z"]], "+", RowBox[List["18", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["40", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["9", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["7", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["30", "-", RowBox[List["30", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "12"]]], " ", SuperscriptBox["2", RowBox[List["1", "/", "6"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["30", "-", RowBox[List["30", " ", "\[ImaginaryI]"]]]], ")"]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryBi", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "160"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "6"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["36", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]]]], "-", RowBox[List["40", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", FractionBox[RowBox[List["9", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["8", "/", "3"]]]]], SuperscriptBox["2", RowBox[List["1", "/", "3"]]]]]], ")"]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["80", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["18", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]]]], "-", RowBox[List["40", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "-", RowBox[List["9", " ", "\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "z"]], ")"]], RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]]]], RowBox[List["216", " ", SuperscriptBox["2", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["11", "/", "3"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.