Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinKei






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinKei[nu,z] > Series representations > Generalized power series > Expansions at z==0 > For the function itself > Logarithmic cases





http://functions.wolfram.com/03.19.06.0024.01









  


  










Input Form





KelvinKei[2, z] \[Proportional] 2/z^2 + (z^2/16) (-(3/2) + 2 EulerGamma + 2 Log[z/2] - (z^4/384) (-(43/12) + 2 EulerGamma + 2 Log[z/2]) + \[Ellipsis]) - ((Pi z^4)/384) (1 - z^4/1920 + z^8/25804800 + \[Ellipsis]) /; (z -> 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKei", "[", RowBox[List["2", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox["2", SuperscriptBox["z", "2"]], "+", RowBox[List[FractionBox[SuperscriptBox["z", "2"], "16"], RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z", "4"], " "]], "384"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["43", "12"]]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]]]], ")"]]]], "+", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", SuperscriptBox["z", "4"], " "]], "384"], RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], "1920"], "+", FractionBox[SuperscriptBox["z", "8"], "25804800"], "+", "\[Ellipsis]"]], ")"]]]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> kei </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mn> 2 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 16 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 384 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mn> 43 </mn> <mn> 12 </mn> </mfrac> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mn> 384 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 1920 </mn> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 8 </mn> </msup> <mn> 25804800 </mn> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> KelvinKei </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 16 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 384 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 43 <sep /> 12 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 384 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 1920 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <cn type='integer'> 25804800 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKei", "[", RowBox[List["2", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["2", SuperscriptBox["z", "2"]], "+", RowBox[List[FractionBox["1", "16"], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]], "-", RowBox[List[FractionBox["1", "384"], " ", SuperscriptBox["z", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["43", "12"]]], "+", RowBox[List["2", " ", "EulerGamma"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]]]], ")"]]]], "+", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[FractionBox["1", "384"], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", SuperscriptBox["z", "4"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SuperscriptBox["z", "4"], "1920"], "+", FractionBox[SuperscriptBox["z", "8"], "25804800"], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02