Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinKei






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinKei[nu,z] > Representations through more general functions > Through Meijer G > Classical cases for products of kei





http://functions.wolfram.com/03.19.26.0010.01









  


  










Input Form





KelvinKei[-\[Nu], z^(1/4)] KelvinKei[\[Nu], z^(1/4)] == (-(Sqrt[Pi/2]/8)) MeijerG[{{}, {1/4, 3/4}}, {{0, -(\[Nu]/2), \[Nu]/2, (1 - \[Nu])/2, (1 + \[Nu])/2}, {1/2}}, z/16] + (1/(16 Sqrt[Pi])) Cos[Pi \[Nu]] MeijerG[{{}, {}}, {{0, 1/2, \[Nu]/2, -(\[Nu]/2)}, {}}, z/64]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]], RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[SqrtBox[FractionBox["\[Pi]", "2"]], "8"]]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]], ",", FractionBox["\[Nu]", "2"], ",", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]]]], "}"]], ",", FractionBox["z", "16"]]], "]"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["16", " ", SqrtBox["\[Pi]"]]]], RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"], ",", FractionBox["\[Nu]", "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", FractionBox["z", "64"]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> kei </mi> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msub> <mo> ( </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> kei </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> ) </mo> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> z </mi> <mn> 64 </mn> </mfrac> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;0&quot;, &quot;,&quot;, &quot;4&quot;]], RowBox[List[&quot;4&quot;, &quot;,&quot;, &quot;0&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[FractionBox[&quot;z&quot;, &quot;64&quot;], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </msqrt> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 6 </mn> </mrow> <mrow> <mn> 5 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> z </mi> <mn> 16 </mn> </mfrac> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;6&quot;]], RowBox[List[&quot;5&quot;, &quot;,&quot;, &quot;0&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[FractionBox[&quot;z&quot;, &quot;16&quot;], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;4&quot;], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;4&quot;], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], &quot;2&quot;], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <times /> <apply> <ci> KelvinKei </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <ci> KelvinKei </ci> <ci> &#957; </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <cos /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list /> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list /> </list> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 64 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> MeijerG </ci> <list> <list /> <list> <cn type='rational'> 1 <sep /> 4 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> </list> </list> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 16 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["KelvinKei", "[", RowBox[List[RowBox[List["-", "\[Nu]_"]], ",", SuperscriptBox["z_", RowBox[List["1", "/", "4"]]]]], "]"]], " ", RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]_", ",", SuperscriptBox["z_", RowBox[List["1", "/", "4"]]]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["-", SqrtBox[FractionBox["\[Pi]", "2"]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]], ",", FractionBox["\[Nu]", "2"], ",", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]]]], "}"]], ",", FractionBox["z", "16"]]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"], ",", FractionBox["\[Nu]", "2"], ",", RowBox[List["-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", FractionBox["z", "64"]]], "]"]]]], RowBox[List["16", " ", SqrtBox["\[Pi]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.