Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinKer






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinKer[z] > Differentiation > Fractional integro-differentiation





http://functions.wolfram.com/03.16.20.0007.01









  


  










Input Form





D[KelvinKer[z], {z, \[Alpha]}] == (-z^(-\[Alpha])) Sum[(((-1)^k FDLogConstant[z, 4 k, \[Alpha]])/ (2^(4 k) (2 k)!^2)) z^(4 k), {k, 0, Infinity}] + Sum[(((-1)^k (4 k)! PolyGamma[1 + 2 k])/ (2^(4 k) ((2 k)!^2 Gamma[1 + 4 k - \[Alpha]]))) z^(4 k), {k, 0, Infinity}]/z^\[Alpha] + 2^(-(15/2) + 2 \[Alpha]) Pi^3 z^(2 - \[Alpha]) HypergeometricPFQRegularized[{3/4, 5/4}, {3/2, (3 - \[Alpha])/4, 1 - \[Alpha]/4, (5 - \[Alpha])/4, (6 - \[Alpha])/4}, -(z^4/256)] + (2^(1/2 + 2 \[Alpha]) Pi^2 Log[2] HypergeometricPFQRegularized[{1/4, 3/4}, {1/2, (1 - \[Alpha])/4, (2 - \[Alpha])/4, (3 - \[Alpha])/4, 1 - \[Alpha]/4}, -(z^4/256)])/z^\[Alpha]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["KelvinKer", "[", "z", "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], SuperscriptBox["2", RowBox[List[RowBox[List["-", "4"]], " ", "k"]]], " ", RowBox[List["FDLogConstant", "[", RowBox[List["z", ",", RowBox[List["4", " ", "k"]], ",", "\[Alpha]"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], ")"]], "2"]], SuperscriptBox["z", RowBox[List["4", "k"]]]]]]]]], "+", RowBox[List[SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "4"]], " ", "k"]]], RowBox[List[RowBox[List["(", RowBox[List["4", " ", "k"]], ")"]], "!"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], ")"]], "2"], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", RowBox[List["4", " ", "k"]], "-", "\[Alpha]"]], "]"]]]]], SuperscriptBox["z", RowBox[List["4", "k"]]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["15", "2"]]], "+", RowBox[List["2", " ", "\[Alpha]"]]]]], " ", SuperscriptBox["\[Pi]", "3"], " ", SuperscriptBox["z", RowBox[List["2", "-", "\[Alpha]"]]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "4"], ",", FractionBox["5", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", FractionBox[RowBox[List["3", "-", "\[Alpha]"]], "4"], ",", RowBox[List["1", "-", FractionBox["\[Alpha]", "4"]]], ",", FractionBox[RowBox[List["5", "-", "\[Alpha]"]], "4"], ",", FractionBox[RowBox[List["6", "-", "\[Alpha]"]], "4"]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", " ", "\[Alpha]"]]]]], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["Log", "[", "2", "]"]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["1", "-", "\[Alpha]"]], "4"], ",", FractionBox[RowBox[List["2", "-", "\[Alpha]"]], "4"], ",", FractionBox[RowBox[List["3", "-", "\[Alpha]"]], "4"], ",", RowBox[List["1", "-", FractionBox["\[Alpha]", "4"]]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <mi> ker </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#945; </mi> </mrow> <mo> - </mo> <mfrac> <mn> 15 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 5 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> &#945; </mi> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 5 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mn> 6 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 256 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], &quot;5&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;3&quot;, &quot;4&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;5&quot;, &quot;4&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;3&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], &quot;4&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, FractionBox[&quot;\[Alpha]&quot;, &quot;4&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;5&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], &quot;4&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;6&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], &quot;4&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[SuperscriptBox[&quot;z&quot;, &quot;4&quot;], &quot;256&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#945; </mi> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 5 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> &#945; </mi> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 256 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], &quot;5&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;4&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;4&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], &quot;4&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;2&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], &quot;4&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;3&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], &quot;4&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, FractionBox[&quot;\[Alpha]&quot;, &quot;4&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[SuperscriptBox[&quot;z&quot;, &quot;4&quot;], &quot;256&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <mi> &#8497;&#119966; </mi> <mi> log </mi> <mrow> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> &#945; </ci> </degree> </bvar> <apply> <ci> KelvinKer </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#945; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='rational'> 3 <sep /> 4 </cn> <cn type='rational'> 5 <sep /> 4 </cn> </list> <list> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#945; </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 6 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 256 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#945; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='rational'> 1 <sep /> 4 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#945; </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 256 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -4 </cn> <ci> k </ci> </apply> </apply> <apply> <factorial /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -4 </cn> <ci> k </ci> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#8497;&#119966; </ci> <ci> log </ci> </apply> <ci> &#945; </ci> </apply> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["KelvinKer", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "4"]], " ", "k"]]], " ", RowBox[List["FDLogConstant", "[", RowBox[List["z", ",", RowBox[List["4", " ", "k"]], ",", "\[Alpha]"]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["4", " ", "k"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], ")"]], "2"]]]]]], "+", RowBox[List[SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "4"]], " ", "k"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["4", " ", "k"]], ")"]], "!"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["4", " ", "k"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], ")"]], "2"], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", RowBox[List["4", " ", "k"]], "-", "\[Alpha]"]], "]"]]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["15", "2"]]], "+", RowBox[List["2", " ", "\[Alpha]"]]]]], " ", SuperscriptBox["\[Pi]", "3"], " ", SuperscriptBox["z", RowBox[List["2", "-", "\[Alpha]"]]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "4"], ",", FractionBox["5", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", FractionBox[RowBox[List["3", "-", "\[Alpha]"]], "4"], ",", RowBox[List["1", "-", FractionBox["\[Alpha]", "4"]]], ",", FractionBox[RowBox[List["5", "-", "\[Alpha]"]], "4"], ",", FractionBox[RowBox[List["6", "-", "\[Alpha]"]], "4"]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", " ", "\[Alpha]"]]]]], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["Log", "[", "2", "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["1", "-", "\[Alpha]"]], "4"], ",", FractionBox[RowBox[List["2", "-", "\[Alpha]"]], "4"], ",", FractionBox[RowBox[List["3", "-", "\[Alpha]"]], "4"], ",", RowBox[List["1", "-", FractionBox["\[Alpha]", "4"]]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.