Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











SphericalBesselJ






Mathematica Notation

Traditional Notation









Bessel-Type Functions > SphericalBesselJ[nu,z] > Specific values > Specialized values > For fixed z > Explicit rational nu





http://functions.wolfram.com/03.21.03.0035.01









  


  










Input Form





SphericalBesselJ[31/6, z] == (-((24640 (2/3)^(5/6) Sqrt[Pi])/(243 z^(37/6)))) (9 z^(4/3) (1 - (27 z^2)/280 + (81 z^4)/98560) (Sqrt[3] AiryAi[(-(3/2)^(2/3)) z^(2/3)] + AiryBi[(-(3/2)^(2/3)) z^(2/3)]) - 4 2^(1/3) 3^(1/6) (1 - (9 z^2)/28 + (243 z^4)/24640) (3 AiryAiPrime[(-(3/2)^(2/3)) z^(2/3)] + Sqrt[3] AiryBiPrime[(-(3/2)^(2/3)) z^(2/3)]))










Standard Form





Cell[BoxData[RowBox[List[" ", RowBox[List[RowBox[List["SphericalBesselJ", "[", RowBox[List[FractionBox["31", "6"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["24640", " ", SuperscriptBox[RowBox[List["(", FractionBox["2", "3"], ")"]], RowBox[List["5", "/", "6"]]], " ", SqrtBox["\[Pi]"]]], RowBox[List["243", " ", SuperscriptBox["z", RowBox[List["37", "/", "6"]]]]]]]], RowBox[List["(", RowBox[List[RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["4", "/", "3"]]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["27", " ", SuperscriptBox["z", "2"]]], "280"], "+", FractionBox[RowBox[List["81", " ", SuperscriptBox["z", "4"]]], "98560"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], ")"]]]], "-", RowBox[List["4", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["9", " ", SuperscriptBox["z", "2"]]], "28"], "+", FractionBox[RowBox[List["243", " ", SuperscriptBox["z", "4"]]], "24640"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["AiryAiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]]]]]], ")"]], " "]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> j </mi> <mfrac> <mn> 31 </mn> <mn> 6 </mn> </mfrac> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 243 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 37 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 24640 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 81 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mn> 98560 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 27 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 280 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mi> Ai </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> Bi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 243 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mn> 24640 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 28 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> Ai </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> Bi </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> SphericalBesselJ </ci> <cn type='rational'> 31 <sep /> 6 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 243 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 37 <sep /> 6 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 24640 </cn> <apply> <power /> <cn type='rational'> 2 <sep /> 3 </cn> <cn type='rational'> 5 <sep /> 6 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 4 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 81 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 98560 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 27 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 280 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> AiryAi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> AiryBi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 243 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 24640 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 28 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> AiryAiPrime </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> AiryBiPrime </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalBesselJ", "[", RowBox[List[FractionBox["31", "6"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["24640", " ", SuperscriptBox[RowBox[List["(", FractionBox["2", "3"], ")"]], RowBox[List["5", "/", "6"]]], " ", SqrtBox["\[Pi]"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["4", "/", "3"]]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["27", " ", SuperscriptBox["z", "2"]]], "280"], "+", FractionBox[RowBox[List["81", " ", SuperscriptBox["z", "4"]]], "98560"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], ")"]]]], "-", RowBox[List["4", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["9", " ", SuperscriptBox["z", "2"]]], "28"], "+", FractionBox[RowBox[List["243", " ", SuperscriptBox["z", "4"]]], "24640"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["AiryAiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["243", " ", SuperscriptBox["z", RowBox[List["37", "/", "6"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.