Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











SphericalBesselJ






Mathematica Notation

Traditional Notation









Bessel-Type Functions > SphericalBesselJ[nu,z] > Differentiation > Symbolic differentiation > With respect to z





http://functions.wolfram.com/03.21.20.0017.01









  


  










Input Form





Derivative[0, n][SphericalBesselJ][\[Nu], 0] == (I^(n - \[Nu]) 2^(-1 - n) Sqrt[Pi] Gamma[1 + n])/ (Gamma[(1/2) (2 + n - \[Nu])] Gamma[(1/2) (3 + n + \[Nu])]) /; Element[n, Integers] && n > 0 && Element[\[Nu], Integers] && \[Nu] >= 0 && Element[(n - \[Nu])/2, Integers] && (n - \[Nu])/2 >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["0", ",", "n"]], "]"]], "[", "SphericalBesselJ", "]"]], "[", RowBox[List["\[Nu]", ",", "0"]], "]"]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["n", "-", "\[Nu]"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "n", "-", "\[Nu]"]], ")"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["3", "+", "n", "+", "\[Nu]"]], ")"]]]], "]"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]], "\[And]", RowBox[List["\[Nu]", "\[Element]", "Integers"]], "\[And]", RowBox[List["\[Nu]", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[FractionBox[RowBox[List["n", "-", "\[Nu]"]], "2"], "\[Element]", "Integers"]], "\[And]", RowBox[List[FractionBox[RowBox[List["n", "-", "\[Nu]"]], "2"], "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> j </mi> <annotation encoding='Mathematica'> TagBox[&quot;j&quot;, BesselJ] </annotation> </semantics> <mi> &#957; </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;0&quot;, &quot;,&quot;, &quot;n&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msubsup> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mfrac> <mrow> <msup> <mi> &#8520; </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#957; </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 0 </cn> <ci> n </ci> </list> <apply> <ci> Subscript </ci> <apply> <ci> BesselJ </ci> <ci> j </ci> </apply> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <apply> <power /> <imaginaryi /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> n </ci> <ci> &#957; </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> &#957; </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["SphericalBesselJ", TagBox[RowBox[List["(", RowBox[List["0", ",", "n"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["\[Nu]_", ",", "0"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["n", "-", "\[Nu]"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "n", "-", "\[Nu]"]], ")"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["3", "+", "n", "+", "\[Nu]"]], ")"]]]], "]"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]], "&&", RowBox[List["\[Nu]", "\[Element]", "Integers"]], "&&", RowBox[List["\[Nu]", "\[GreaterEqual]", "0"]], "&&", RowBox[List[FractionBox[RowBox[List["n", "-", "\[Nu]"]], "2"], "\[Element]", "Integers"]], "&&", RowBox[List[FractionBox[RowBox[List["n", "-", "\[Nu]"]], "2"], "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.