Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











StruveH






Mathematica Notation

Traditional Notation









Bessel-Type Functions > StruveH[nu,z] > Identities > Recurrence identities > Distant neighbors > Increasing





http://functions.wolfram.com/03.09.17.0005.01









  


  










Input Form





StruveH[\[Nu], z] == -((2^(-3 - \[Nu]) z^(1 + \[Nu]) (-57 + z^2 - 54 \[Nu] - 12 \[Nu]^2))/ (Sqrt[Pi] Gamma[9/2 + \[Nu]])) + (4 (2 + \[Nu]) (6 - z^2 + 8 \[Nu] + 2 \[Nu]^2) StruveH[3 + \[Nu], z])/z^3 + (1 - (4 (1 + \[Nu]) (2 + \[Nu]))/z^2) StruveH[4 + \[Nu], z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["StruveH", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], "-", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "57"]], "+", SuperscriptBox["z", "2"], "-", RowBox[List["54", " ", "\[Nu]"]], "-", RowBox[List["12", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["9", "2"], "+", "\[Nu]"]], "]"]]]]]]], "+", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["6", "-", SuperscriptBox["z", "2"], "+", RowBox[List["8", " ", "\[Nu]"]], "+", RowBox[List["2", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", RowBox[List["StruveH", "[", RowBox[List[RowBox[List["3", "+", "\[Nu]"]], ",", "z"]], "]"]]]], SuperscriptBox["z", "3"]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]]]], SuperscriptBox["z", "2"]]]], ")"]], " ", RowBox[List["StruveH", "[", RowBox[List[RowBox[List["4", "+", "\[Nu]"]], ",", "z"]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 54 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 57 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#957; </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 3 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mfrac> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 4 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> StruveH </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 54 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -57 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <ci> StruveH </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> StruveH </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 4 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["StruveH", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], "-", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "57"]], "+", SuperscriptBox["z", "2"], "-", RowBox[List["54", " ", "\[Nu]"]], "-", RowBox[List["12", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["9", "2"], "+", "\[Nu]"]], "]"]]]]]]], "+", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["6", "-", SuperscriptBox["z", "2"], "+", RowBox[List["8", " ", "\[Nu]"]], "+", RowBox[List["2", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", RowBox[List["StruveH", "[", RowBox[List[RowBox[List["3", "+", "\[Nu]"]], ",", "z"]], "]"]]]], SuperscriptBox["z", "3"]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]]]], SuperscriptBox["z", "2"]]]], ")"]], " ", RowBox[List["StruveH", "[", RowBox[List[RowBox[List["4", "+", "\[Nu]"]], ",", "z"]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.