Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











StruveH






Mathematica Notation

Traditional Notation









Bessel-Type Functions > StruveH[nu,z] > Integration > Indefinite integration > Involving functions of the direct function and elementary functions > Involving elementary functions of the direct function and elementary functions > Involving products of the direct function and a power function





http://functions.wolfram.com/03.09.21.0011.01









  


  










Input Form





Integrate[(StruveH[\[Mu], z] StruveH[\[Nu], z])/z, z] == (1/(2 (\[Mu] - \[Nu]) (\[Mu] + \[Nu]))) ((2^(-\[Mu] - \[Nu]) z^(2 + \[Mu] + \[Nu]) Gamma[(1/2) (2 + \[Mu] + \[Nu])] (Gamma[1/2 + \[Mu]] HypergeometricPFQRegularized[ {1, (1/2) (2 + \[Mu] + \[Nu])}, {3/2 + \[Mu], 3/2, (1/2) (4 + \[Mu] + \[Nu])}, -(z^2/4)] - Gamma[1/2 + \[Nu]] HypergeometricPFQRegularized[{1, (1/2) (2 + \[Mu] + \[Nu])}, {3/2 + \[Nu], 3/2, (1/2) (4 + \[Mu] + \[Nu])}, -(z^2/4)]))/ (Sqrt[Pi] Gamma[1/2 + \[Mu]] Gamma[1/2 + \[Nu]]) + 2 z StruveH[-1 + \[Mu], z] StruveH[\[Nu], z] - 2 StruveH[\[Mu], z] (z StruveH[-1 + \[Nu], z] + (\[Mu] - \[Nu]) StruveH[\[Nu], z]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["StruveH", "[", RowBox[List["\[Mu]", ",", "z"]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "z"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["2", "+", "\[Mu]", "+", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "\[Mu]", "+", "\[Nu]"]], ")"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "\[Mu]", "+", "\[Nu]"]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "\[Mu]"]], ",", FractionBox["3", "2"], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["4", "+", "\[Mu]", "+", "\[Nu]"]], ")"]]]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]]], "]"]]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "\[Mu]", "+", "\[Nu]"]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ",", FractionBox["3", "2"], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["4", "+", "\[Mu]", "+", "\[Nu]"]], ")"]]]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], "]"]]]], ")"]]]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["StruveH", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "\[Mu]"]], ",", "z"]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["StruveH", "[", RowBox[List["\[Mu]", ",", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["StruveH", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Nu]"]], ")"]], " ", RowBox[List["StruveH", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mi> &#956; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mi> z </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mrow> <mi> &#956; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> &#956; </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Mu]&quot;, &quot;+&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, &quot;2&quot;]], &quot;)&quot;]]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;\[Mu]&quot;, &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Mu]&quot;, &quot;+&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, &quot;4&quot;]], &quot;)&quot;]]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[SuperscriptBox[&quot;z&quot;, &quot;2&quot;], &quot;4&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Mu]&quot;, &quot;+&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, &quot;2&quot;]], &quot;)&quot;]]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;2&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Mu]&quot;, &quot;+&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, &quot;4&quot;]], &quot;)&quot;]]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[SuperscriptBox[&quot;z&quot;, &quot;2&quot;], &quot;4&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mi> &#956; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveH </ci> </annotation-xml> </semantics> </mstyle> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <ci> StruveH </ci> <ci> &#956; </ci> <ci> z </ci> </apply> <apply> <ci> StruveH </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> StruveH </ci> <apply> <plus /> <ci> &#956; </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <apply> <ci> StruveH </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#956; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#956; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> </list> <list> <apply> <plus /> <ci> &#956; </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> 4 </cn> </apply> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> </list> <list> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> 4 </cn> </apply> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> StruveH </ci> <ci> &#956; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <ci> StruveH </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <ci> StruveH </ci> <ci> &#957; </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["StruveH", "[", RowBox[List["\[Mu]_", ",", "z_"]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], "z_"], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]"]]], " ", SuperscriptBox["z", RowBox[List["2", "+", "\[Mu]", "+", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "\[Mu]", "+", "\[Nu]"]], ")"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "\[Mu]", "+", "\[Nu]"]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "\[Mu]"]], ",", FractionBox["3", "2"], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["4", "+", "\[Mu]", "+", "\[Nu]"]], ")"]]]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]]], "]"]]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "\[Mu]", "+", "\[Nu]"]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ",", FractionBox["3", "2"], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["4", "+", "\[Mu]", "+", "\[Nu]"]], ")"]]]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "2"], "4"]]]]], "]"]]]]]], ")"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Mu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], "]"]]]]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["StruveH", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "\[Mu]"]], ",", "z"]], "]"]], " ", RowBox[List["StruveH", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["StruveH", "[", RowBox[List["\[Mu]", ",", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["StruveH", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Nu]"]], ")"]], " ", RowBox[List["StruveH", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]]]], ")"]]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.