Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











StruveL






Mathematica Notation

Traditional Notation









Bessel-Type Functions > StruveL[nu,z] > Specific values > Specialized values > For fixed z > Symbolic rational nu





http://functions.wolfram.com/03.10.03.0006.01









  


  










Input Form





StruveL[\[Nu], z] == (-(1/Sqrt[z])) E^((1/2) Pi I (1/2 + \[Nu])) Sqrt[2/Pi] (Sinh[(1/2) I Pi (1/2 + \[Nu]) - z] Sum[(2 k - \[Nu] - 1/2)!/ ((2 k)! (-2 k - \[Nu] - 1/2)! (2 z)^(2 k)), {k, 0, Floor[(-(1/4)) (2 \[Nu] + 1)]}] + Cosh[(1/2) I Pi (1/2 + \[Nu]) - z] Sum[((2 k - \[Nu] + 1/2)! (2 z)^(-2 k - 1))/ ((2 k + 1)! (-2 k - \[Nu] - 3/2)!), {k, 0, Floor[(-(1/4)) (2 \[Nu] + 3)]}]) /; Element[-\[Nu] - 1/2, Integers] && -\[Nu] - 1/2 >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["StruveL", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", SqrtBox["z"]]]], SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ")"]]]]], " ", SqrtBox[FractionBox["2", "\[Pi]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Sinh", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ")"]]]], "-", "z"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]]]], "]"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "\[Nu]", "-", FractionBox["1", "2"]]], ")"]], "!"]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "-", "\[Nu]", "-", FractionBox["1", "2"]]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "z"]], ")"]], RowBox[List["2", " ", "k"]]]]]]]]]], "+", RowBox[List[RowBox[List["Cosh", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ")"]]]], "-", "z"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "3"]], ")"]]]], "]"]]], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "\[Nu]", "+", FractionBox["1", "2"]]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "z"]], ")"]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "-", "1"]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "-", "\[Nu]", "-", FractionBox["3", "2"]]], ")"]], "!"]]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "-", FractionBox["1", "2"]]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "-", FractionBox["1", "2"]]], "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> L </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveL </ci> </annotation-xml> </semantics> </mstyle> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msqrt> <mi> z </mi> </msqrt> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 2 </mn> <mi> &#960; </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> </munderover> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> </munderover> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> StruveL </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <pi /> <imaginaryi /> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <sinh /> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <imaginaryi /> <pi /> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <cosh /> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <imaginaryi /> <pi /> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["StruveL", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ")"]]]]], " ", SqrtBox[FractionBox["2", "\[Pi]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Sinh", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ")"]]]], "-", "z"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]]]], "]"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "\[Nu]", "-", FractionBox["1", "2"]]], ")"]], "!"]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "-", "\[Nu]", "-", FractionBox["1", "2"]]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "z"]], ")"]], RowBox[List["2", " ", "k"]]]]]]]]]], "+", RowBox[List[RowBox[List["Cosh", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ")"]]]], "-", "z"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "3"]], ")"]]]], "]"]]], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "\[Nu]", "+", FractionBox["1", "2"]]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "z"]], ")"]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "-", "1"]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "-", "\[Nu]", "-", FractionBox["3", "2"]]], ")"]], "!"]]]]]]]]]]], ")"]]]], SqrtBox["z"]]]], "/;", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "-", FractionBox["1", "2"]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "\[Nu]"]], "-", FractionBox["1", "2"]]], "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.