Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











StruveL






Mathematica Notation

Traditional Notation









Bessel-Type Functions > StruveL[nu,z] > Differentiation > Low-order differentiation > With respect to nu





http://functions.wolfram.com/03.10.20.0017.01









  


  










Input Form





Derivative[1, 0][StruveL][-n - 1/2, z] == (2 CoshIntegral[z] - CoshIntegral[2 z]) BesselI[n + 1/2, z] + (SinhIntegral[2 z] - 2 SinhIntegral[z]) BesselI[-n - 1/2, z] - (n!/2) Sum[(1/(k! (n - k))) (-(z/2))^(k - n) BesselI[k + 1/2, z], {k, 0, n - 1}] - ((n! Sqrt[Pi z])/2) Sum[(1/((n - k)! k)) (-(2/z))^k Sum[((-z)^p/p!) ((2^(1/2 - p) BesselI[p - 1/2, z] - BesselI[p - 1/2, 2 z]) BesselI[n - k + 1/2, z] - (2^(1/2 - p) BesselI[1/2 - p, z] - BesselI[1/2 - p, 2 z]) BesselI[k - n - 1/2, z]), {p, 0, k - 1}], {k, 1, n}] /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["1", ",", "0"]], "]"]], "[", "StruveL", "]"]], "[", RowBox[List[RowBox[List[RowBox[List["-", "n"]], "-", FractionBox["1", "2"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["CoshIntegral", "[", "z", "]"]]]], "-", RowBox[List["CoshIntegral", "[", RowBox[List["2", " ", "z"]], "]"]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["n", "+", FractionBox["1", "2"]]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["SinhIntegral", "[", RowBox[List["2", " ", "z"]], "]"]], "-", RowBox[List["2", " ", RowBox[List["SinhIntegral", "[", "z", "]"]]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List[RowBox[List["-", "n"]], "-", FractionBox["1", "2"]]], ",", "z"]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["n", "!"]], "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["z", "2"]]], ")"]], RowBox[List["k", "-", "n"]]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["k", "+", FractionBox["1", "2"]]], ",", "z"]], "]"]]]]]]]], "-", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["n", "!"]], " ", SqrtBox[RowBox[List["\[Pi]", " ", "z"]]], " "]]]], "2"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]], " ", "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["2", "z"]]], ")"]], "k"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List["k", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "p"], " "]], RowBox[List["p", "!"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], "-", "p"]]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["p", "-", FractionBox["1", "2"]]], ",", "z"]], "]"]]]], "-", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["p", "-", FractionBox["1", "2"]]], ",", RowBox[List["2", " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["n", "-", "k", "+", FractionBox["1", "2"]]], ",", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], "-", "p"]]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "p"]], ",", "z"]], "]"]]]], "-", RowBox[List["BesselI", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "p"]], ",", RowBox[List["2", " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["k", "-", "n", "-", FractionBox["1", "2"]]], ",", "z"]], "]"]]]]]], ")"]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mstyle fontweight='bold' fontstyle='normal'> <semantics> <mi> L </mi> <annotation-xml encoding='MathML-Content'> <ci> StruveL </ci> </annotation-xml> </semantics> </mstyle> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <msub> <mi> I </mi> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Chi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> Chi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <msub> <mi> I </mi> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 2 </mn> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> p </mi> </msup> <mtext> </mtext> </mrow> <mrow> <mi> p </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> p </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mrow> <mi> p </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <mi> I </mi> <mrow> <mi> p </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> p </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> p </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <mi> I </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> p </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <apply> <ci> Subscript </ci> <ci> StruveL </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> BesselI </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> CoshIntegral </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> CoshIntegral </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> BesselI </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> SinhIntegral </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> SinhIntegral </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <factorial /> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <ci> BesselI </ci> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <factorial /> <ci> n </ci> </apply> <apply> <power /> <apply> <times /> <pi /> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> <apply> <ci> BesselI </ci> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> BesselI </ci> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <ci> BesselI </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> <apply> <ci> BesselI </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> BesselI </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <ci> BesselI </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["StruveL", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List[RowBox[List["-", "n_"]], "-", FractionBox["1", "2"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["CoshIntegral", "[", "z", "]"]]]], "-", RowBox[List["CoshIntegral", "[", RowBox[List["2", " ", "z"]], "]"]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["n", "+", FractionBox["1", "2"]]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["SinhIntegral", "[", RowBox[List["2", " ", "z"]], "]"]], "-", RowBox[List["2", " ", RowBox[List["SinhIntegral", "[", "z", "]"]]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List[RowBox[List["-", "n"]], "-", FractionBox["1", "2"]]], ",", "z"]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["z", "2"]]], ")"]], RowBox[List["k", "-", "n"]]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["k", "+", FractionBox["1", "2"]]], ",", "z"]], "]"]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]]]]]]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["n", "!"]], " ", SqrtBox[RowBox[List["\[Pi]", " ", "z"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["2", "z"]]], ")"]], "k"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List["k", "-", "1"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "p"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], "-", "p"]]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["p", "-", FractionBox["1", "2"]]], ",", "z"]], "]"]]]], "-", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["p", "-", FractionBox["1", "2"]]], ",", RowBox[List["2", " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["n", "-", "k", "+", FractionBox["1", "2"]]], ",", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], "-", "p"]]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "p"]], ",", "z"]], "]"]]]], "-", RowBox[List["BesselI", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "p"]], ",", RowBox[List["2", " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["k", "-", "n", "-", FractionBox["1", "2"]]], ",", "z"]], "]"]]]]]], ")"]]]], RowBox[List["p", "!"]]]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]], " ", "k"]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Contributed by





Brychkov Yu.A. (2005)










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.