html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 StruveL

The best-known properties and formulas for Struve functions

For real values of parameter and positive argument , the values of the Struve functions and are real.

The Struve functions and have rather simple values for the argument :

In the cases when parameter is equal to , the Struve functions and can be expressed through the sine and cosine (or hyperbolic sine and cosine) multiplied by rational and sqrt functions, for example:

The previous formulas are the particular cases of the following general formulas:

The Struve functions and are defined for all complex values of their parameter and variable . They are analytical functions of and over the whole complex ‐ and ‐planes excluding the branch cuts. For fixed integer , the functions and are entire functions of . For fixed , the functions and are entire functions of .

For fixed , the functions and have an essential singularity at . At the same time, the point is a branch point (except cases for integer ).

With respect to , the Struve functions have only one essential singular point at .

For fixed noninteger , the functions and have two branch points: and .

If functions and have branch cuts, they are single‐valued functions on the ‐plane cut along the interval , where they are continuous from above:

From below, functions have discontinuities that are described by the formulas:

The Struve functions and do not have periodicity.

The Struve functions and have mirror symmetry (except on the branch cut interval (-∞, 0)):

The Struve functions and have generalized parity (either odd or even) with respect to variable :

The Struve functions and have the following series expansions through series that converge on the whole ‐plane:

Interestingly, closed-form expressions for the truncated version of the Taylor series at the origin can be expressed through the generalized hypergeometric function , for example:

The asymptotic behavior of the Struve functions and can be described by the following formulas (only the main terms of asymptotic expansion are given):

The previous formulas are valid in any directions approaching point to infinity (z∞). In particular cases when or , these formulas can be simplified to the following relations:

The Struve functions and have simple integral representations through the sine (or hyperbolic sine) and power functions:

Arguments of the Struve functions and with square root arguments can sometimes be simplified:

The Struve functions and satisfy the following recurrence identities:

The previous identities can be generalized to the following recurrence identities with a jump of length n:

The derivatives of the Struve functions and have simple representations that can also be expressed through Struve functions with different indices:

The symbolic -order derivatives have the following representations:

The Struve functions and appeared as special solutions of the special inhomogeneous Bessel second-order linear differential equations:

where and are arbitrary constants and , , , and are Bessel functions. The previous equations are very similar and can be converted into each other by changing to .