html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 EulerGamma

 http://functions.wolfram.com/02.06.06.0010.01

 Input Form

 EulerGamma == 1 - Log[3/2] - Sum[(Zeta[2 k + 1] - 1)/(4^k (2 k + 1)), {k, 1, Infinity}]

 Standard Form

 Cell[BoxData[RowBox[List["EulerGamma", "\[Equal]", RowBox[List["1", "-", RowBox[List["Log", "[", FractionBox["3", "2"], "]"]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Zeta", "[", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], "]"]], "-", "1"]], RowBox[List[SuperscriptBox["4", "k"], RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], ")"]]]]]]]]]]]]]

 MathML Form

 TagBox["\[DoubledGamma]", Function[EulerGamma]] 1 - log ( 3 2 ) - k = 1 ζ ( 2 k + 1 ) TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[\$CellContext`e, Zeta[\$CellContext`e]]]] - 1 4 k ( 2 k + 1 ) 1 -1 3 2 -1 k 1 Zeta 2 k 1 -1 4 k 2 k 1 -1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "EulerGamma", "]"]], "\[RuleDelayed]", RowBox[List["1", "-", RowBox[List["Log", "[", FractionBox["3", "2"], "]"]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Zeta", "[", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], "]"]], "-", "1"]], RowBox[List[SuperscriptBox["4", "k"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]]]]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29