html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 EulerGamma

 http://functions.wolfram.com/02.06.07.0015.01

 Input Form

 EulerGamma == 1 - Integrate[(1/(t + 1)) Sum[t^2^k, {k, 1, Infinity}], {t, 0, 1}]

 Standard Form

 Cell[BoxData[RowBox[List["EulerGamma", "\[Equal]", RowBox[List["1", "-", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[FractionBox["1", RowBox[List["t", "+", "1"]]], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], SuperscriptBox["t", SuperscriptBox["2", "k"]]]], ")"]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]]]]

 MathML Form

 TagBox["\[DoubledGamma]", Function[EulerGamma]] 1 - 0 1 1 t + 1 k = 1 t 2 k t TagBox["\[DoubledGamma]", Function[EulerGamma]] 1 - 0 1 1 t + 1 k = 1 t 2 k t [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "EulerGamma", "]"]], "\[RuleDelayed]", RowBox[List["1", "-", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], SuperscriptBox["t", SuperscriptBox["2", "k"]]]], RowBox[List["t", "+", "1"]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29