html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 EulerGamma

 http://functions.wolfram.com/02.06.07.0020.01

 Input Form

 EulerGamma == Integrate[(1/t) (1/(t^2 + 1) - BesselJ[0, 2 t]), {t, 0, Infinity}]

 Standard Form

 Cell[BoxData[RowBox[List["EulerGamma", "\[Equal]", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox["1", "t"], RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["t", "2"], "+", "1"]]], "-", RowBox[List["BesselJ", "[", RowBox[List["0", ",", RowBox[List["2", " ", "t"]]]], "]"]]]], ")"]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]]

 MathML Form

 TagBox["\[DoubledGamma]", Function[EulerGamma]] 0 1 t ( 1 t 2 + 1 - J 0 ( 2 t ) ) t t 0 1 t -1 1 t 2 1 -1 -1 BesselJ 0 2 t [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "EulerGamma", "]"]], "\[RuleDelayed]", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["t", "2"], "+", "1"]]], "-", RowBox[List["BesselJ", "[", RowBox[List["0", ",", RowBox[List["2", " ", "t"]]]], "]"]]]], "t"], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29