html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Pi

 http://functions.wolfram.com/02.03.06.0019.01

 Input Form

 Pi == Sum[((3^k - 1) Zeta[k + 1])/4^k, {k, 1, Infinity}]

 Standard Form

 Cell[BoxData[RowBox[List["\[Pi]", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["3", "k"], "-", "1"]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List["k", "+", "1"]], "]"]]]], SuperscriptBox["4", "k"]]]]]]]]

 MathML Form

 π k = 1 ( 3 k - 1 ) ζ ( k + 1 ) TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List["k", "+", "1"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[Zeta[Slot[1]]]]] 4 k k 1 3 k -1 Zeta k 1 4 k -1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "\[Pi]", "]"]], "\[RuleDelayed]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["3", "k"], "-", "1"]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List["k", "+", "1"]], "]"]]]], SuperscriptBox["4", "k"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29