html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Pi

 http://functions.wolfram.com/02.03.06.0048.01

 Input Form

 Pi == -((243 Sqrt[3])/67) + (81/938) Sqrt[3] Sum[k^5/Binomial[2 k, k], {k, 1, Infinity}]

 Standard Form

 Cell[BoxData[RowBox[List["\[Pi]", "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["243", " ", SqrtBox["3"]]], "67"]]], "+", RowBox[List[FractionBox["81", "938"], " ", SqrtBox["3"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[SuperscriptBox["k", "5"], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", "k"]], ",", "k"]], "]"]]]]]]]]]]]]]

 MathML Form

 π - 243 3 67 + 81 938 3 k = 1 k 5 ( 2 k k ) TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["2", " ", "k"]], Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] -1 243 3 1 2 67 -1 81 938 3 1 2 k 1 k 5 Binomial 2 k k -1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", "\[Pi]", "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "67"]]], " ", RowBox[List["(", RowBox[List["243", " ", SqrtBox["3"]]], ")"]]]], "+", RowBox[List[FractionBox["81", "938"], " ", SqrtBox["3"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[SuperscriptBox["k", "5"], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", "k"]], ",", "k"]], "]"]]]]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2002-12-18