html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Pi

 http://functions.wolfram.com/02.03.10.0009.01

 Input Form

 4/Pi == 1 + ContinueFraction[{(2 k - 1)^2, 2}, {k, 1, Infinity}]

 Standard Form

 Cell[BoxData[RowBox[List[FractionBox["4", "\[Pi]"], "\[Equal]", RowBox[List["1", "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "-", "1"]], ")"]], "2"], ",", "2"]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "\[Infinity]"]], "}"]]]], "]"]]]]]]]]

 MathML Form

 4 π 1 + Κ k ( ( 2 k - 1 ) 2 , 2 ) 1 4 -1 1 Subscript Subscript Κ k 2 k -1 2 2 1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", FractionBox["4", "\[Pi]"], "]"]], "\[RuleDelayed]", RowBox[List["1", "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "1"]], ")"]], "2"], ",", "2"]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "\[Infinity]"]], "}"]]]], "]"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29