Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCos






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCos[z] > Transformations > Transformations and argument simplifications > Argument involving basic arithmetic operations > Involving cos-1((1-z2)1/2/(-z2)1/2) > Involving cos-1((1-z2)1/2/(-z2)1/2) and cos-1(1/z)





http://functions.wolfram.com/01.13.16.0078.01









  


  










Input Form





ArcCos[Sqrt[1 - z^2]/Sqrt[-z^2]] == (Pi/2) (1 + Sqrt[z^2/(-1 + z^2)] (-Sqrt[(z^2 - 1)/z^2] + z Sqrt[(-1 + z^2)/z^4])) - z Sqrt[z^2/(-1 + z^2)] Sqrt[(-1 + z^2)/z^4] ArcCos[1/z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcCos", "[", FractionBox[SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[SqrtBox[FractionBox[SuperscriptBox["z", "2"], RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox[FractionBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], SuperscriptBox["z", "2"]]]]], "+", RowBox[List["z", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["z", " ", SqrtBox[FractionBox[SuperscriptBox["z", "2"], RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]], RowBox[List["ArcCos", "[", FractionBox["1", "z"], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mfrac> </msqrt> </mrow> <mo> - </mo> <msqrt> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccos /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arccos /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCos", "[", FractionBox[SqrtBox[RowBox[List["1", "-", SuperscriptBox["z_", "2"]]]], SqrtBox[RowBox[List["-", SuperscriptBox["z_", "2"]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[SqrtBox[FractionBox[SuperscriptBox["z", "2"], RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox[FractionBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], SuperscriptBox["z", "2"]]]]], "+", RowBox[List["z", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["z", " ", SqrtBox[FractionBox[SuperscriptBox["z", "2"], RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]], " ", RowBox[List["ArcCos", "[", FractionBox["1", "z"], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21





© 1998- Wolfram Research, Inc.