Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCosh






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCosh[z] > Transformations > Transformations and argument simplifications > Argument involving basic arithmetic operations > Involving cosh-1(((1-(1+c z2)1/2)/2)1/2) > Involving cosh-1(((1-(1-z2)1/2)/2)1/2) and cosh-1(z)





http://functions.wolfram.com/01.26.16.0144.01









  


  










Input Form





ArcCosh[Sqrt[(1 - Sqrt[1 - z^2])/2]] == (1/4) I Pi (Sqrt[1/(1 - z)] Sqrt[1 - z] - 2 Sqrt[-(1/z)] Sqrt[-z] - 2 Sqrt[1/z] Sqrt[z] + I Sqrt[-(1/z^2)] z + (2 I Sqrt[-z^4])/z^2 + 3 Sqrt[1/(1 + z)] Sqrt[1 + z]) + (1/2) Sqrt[(z + 1)/z] Sqrt[z/(z + 1)] ArcCosh[z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcCosh", "[", SqrtBox[FractionBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]], "2"]], " ", "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[FractionBox["1", RowBox[List["1", "-", "z"]]]], " ", SqrtBox[RowBox[List["1", "-", "z"]]]]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]], " ", SqrtBox[RowBox[List["-", "z"]]]]], "-", RowBox[List["2", " ", SqrtBox[FractionBox["1", "z"]], " ", SqrtBox["z"]]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", "z"]], "+", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "4"]]]]]], SuperscriptBox["z", "2"]], "+", RowBox[List["3", " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", "z"]]]], " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[FractionBox[RowBox[List["z", "+", "1"]], "z"]], " ", SqrtBox[FractionBox["z", RowBox[List["z", "+", "1"]]]], " ", RowBox[List["ArcCosh", "[", "z", "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> cosh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mn> 2 </mn> </mfrac> </msqrt> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </msqrt> </mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mfrac> <mi> z </mi> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> z </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccosh /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <imaginaryi /> <pi /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arccosh /> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCosh", "[", SqrtBox[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z_", "2"]]]]]], ")"]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[FractionBox["1", RowBox[List["1", "-", "z"]]]], " ", SqrtBox[RowBox[List["1", "-", "z"]]]]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]], " ", SqrtBox[RowBox[List["-", "z"]]]]], "-", RowBox[List["2", " ", SqrtBox[FractionBox["1", "z"]], " ", SqrtBox["z"]]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", "z"]], "+", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "4"]]]]]], SuperscriptBox["z", "2"]], "+", RowBox[List["3", " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", "z"]]]], " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[FractionBox[RowBox[List["z", "+", "1"]], "z"]], " ", SqrtBox[FractionBox["z", RowBox[List["z", "+", "1"]]]], " ", RowBox[List["ArcCosh", "[", "z", "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21





© 1998- Wolfram Research, Inc.