Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCot






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCot[z] > Integration > Indefinite integration > For the direct function itself





http://functions.wolfram.com/01.16.21.0009.01









  


  










Input Form





Integrate[ArcCot[a z^2 + b z + c], z] == (1/2) (2 z ArcCot[c + z (b + a z)] + (((-I) b^2 + a (4 + 4 I c)) ArcTan[(b + 2 a z)/Sqrt[-b^2 + 4 a (-I + c)]])/ (a Sqrt[-b^2 + 4 a (-I + c)]) + ((I b^2 + a (4 - 4 I c)) ArcTan[(b + 2 a z)/Sqrt[-b^2 + 4 a (I + c)]])/ (a Sqrt[-b^2 + 4 a (I + c)]) - (b ArcTan[c + z (b + a z)])/a)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["ArcCot", "[", RowBox[List[RowBox[List["a", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["b", " ", "z"]], "+", "c"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z", " ", RowBox[List["ArcCot", "[", RowBox[List["c", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["4", "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "c"]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List["b", "+", RowBox[List["2", " ", "a", " ", "z"]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", "c"]], ")"]]]]]]]], "]"]]]], RowBox[List["a", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", "c"]], ")"]]]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", "c"]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List["b", "+", RowBox[List["2", " ", "a", " ", "z"]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", "c"]], ")"]]]]]]]], "]"]]]], RowBox[List["a", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", "c"]], ")"]]]]]]]]]], "-", FractionBox[RowBox[List["b", " ", RowBox[List["ArcTan", "[", RowBox[List["c", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]], "]"]]]], "a"]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> cot </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> cot </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <arccot /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> <ci> c </ci> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <arccot /> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> z </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <arctan /> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> z </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <cn type='integer'> 4 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arctan /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <cn type='integer'> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <plus /> <ci> c </ci> <imaginaryi /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arctan /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <plus /> <ci> c </ci> <imaginaryi /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["ArcCot", "[", RowBox[List[RowBox[List["a_", " ", SuperscriptBox["z_", "2"]]], "+", RowBox[List["b_", " ", "z_"]], "+", "c_"]], "]"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z", " ", RowBox[List["ArcCot", "[", RowBox[List["c", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["4", "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "c"]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List["b", "+", RowBox[List["2", " ", "a", " ", "z"]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", "c"]], ")"]]]]]]]], "]"]]]], RowBox[List["a", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", "c"]], ")"]]]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", "c"]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List["b", "+", RowBox[List["2", " ", "a", " ", "z"]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", "c"]], ")"]]]]]]]], "]"]]]], RowBox[List["a", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", "c"]], ")"]]]]]]]]]], "-", FractionBox[RowBox[List["b", " ", RowBox[List["ArcTan", "[", RowBox[List["c", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]], "]"]]]], "a"]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.