Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCoth






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCoth[z] > Transformations > Related transformations > Differences involving the direct function > Involving sinh-1(z)





http://functions.wolfram.com/01.28.16.0214.01









  


  










Input Form





ArcCoth[x] - ArcSinh[y] == ArcCoth[(I (-1)^Floor[1/2 - Arg[((I Sqrt[y^2 + 1])/x - I y)/Sqrt[1 - 1/x^2]]/ Pi] (Sqrt[y^2 + 1] - y/x))/(Sqrt[1 - 1/x^2] Sqrt[1 - (Sqrt[y^2 + 1] - y/x)^2/(1 - 1/x^2)])] - (1/2) I Pi (2 (1 + (-1)^Floor[1/2 - Arg[((I Sqrt[y^2 + 1])/x - I y)/Sqrt[1 - 1/x^2]]/ Pi]) Floor[(Arg[(I - I/x)/Sqrt[1 - 1/x^2]] + Arg[y + Sqrt[y^2 + 1]])/(2 Pi)] + (-1)^Floor[1/2 - Arg[((I Sqrt[y^2 + 1])/x - I y)/Sqrt[1 - 1/x^2]]/Pi] + (-1)^(Floor[-(Arg[1 - 1/x^2]/(2 Pi)) + Arg[y/x - Sqrt[y^2 + 1]]/Pi + 1/2] + Floor[1/2 - Arg[((I Sqrt[y^2 + 1])/x - I y)/Sqrt[1 - 1/x^2]]/ Pi]) - 2 (-1 + (-1)^Floor[1/2 - Arg[((I Sqrt[y^2 + 1])/x - I y)/Sqrt[1 - 1/x^2]]/ Pi]) Floor[1/2 - (Arg[(I - I/x)/Sqrt[1 - 1/x^2]] + Arg[y + Sqrt[y^2 + 1]])/(2 Pi)])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcCoth", "[", "x", "]"]], "-", RowBox[List["ArcSinh", "[", "y", "]"]]]], "\[Equal]", RowBox[List[RowBox[List["ArcCoth", "[", FractionBox[RowBox[List["\[ImaginaryI]", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "x"], "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]], "-", FractionBox["y", "x"]]], ")"]]]], RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]], "-", FractionBox["y", "x"]]], ")"]], "2"], RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]]]]]]], "]"]], "-", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "x"], "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["\[ImaginaryI]", "x"]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "x"], "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "+", FractionBox[RowBox[List["Arg", "[", RowBox[List[FractionBox["y", "x"], "-", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "]"]], "\[Pi]"], "+", FractionBox["1", "2"]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "x"], "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "x"], "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]]]], ")"]], " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List[RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["\[ImaginaryI]", "x"]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> coth </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <msup> <mi> coth </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mi> x </mi> </mfrac> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mfrac> <mi> y </mi> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mfrac> <mi> y </mi> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </mfrac> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mi> x </mi> </mfrac> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> y </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mfrac> <mi> &#8520; </mi> <mi> x </mi> </mfrac> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mi> x </mi> </mfrac> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mi> y </mi> <mi> x </mi> </mfrac> <mo> - </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mi> x </mi> </mfrac> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mi> x </mi> </mfrac> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> y </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mfrac> <mi> &#8520; </mi> <mi> x </mi> </mfrac> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <arccoth /> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arcsinh /> <ci> y </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <arccoth /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> y </ci> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> y </ci> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <imaginaryi /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <arg /> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <floor /> <apply> <plus /> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <times /> <ci> y </ci> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <arg /> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["ArcCoth", "[", "x_", "]"]], "-", RowBox[List["ArcSinh", "[", "y_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["ArcCoth", "[", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "x"], "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]], "-", FractionBox["y", "x"]]], ")"]]]], RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]], "-", FractionBox["y", "x"]]], ")"]], "2"], RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]]]]]]], "]"]], "-", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "x"], "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["\[ImaginaryI]", "x"]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "x"], "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "+", FractionBox[RowBox[List["Arg", "[", RowBox[List[FractionBox["y", "x"], "-", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "]"]], "\[Pi]"], "+", FractionBox["1", "2"]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "x"], "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "x"], "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "\[Pi]"]]], "]"]]]]], ")"]], " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List[RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["\[ImaginaryI]", "x"]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.