Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCsch






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCsch[z] > Series representations > Generalized power series > Expansions on branch cuts > For the function itself > In the lower half-plane





http://functions.wolfram.com/01.29.06.0028.01









  


  










Input Form





ArcCsch[z] \[Proportional] (Pi I)/2 - Exp[Pi I Floor[Arg[I (z - x)]/(2 Pi)]] ((I Pi)/2 - ArcCsch[x] + (-x + z)/(x Sqrt[1 + x^2]) - ((1 + 2 x^2) (-x + z)^2)/(2 Sqrt[1 + x^2] x^2 (1 + x^2)) + O[(z - x)^3]) /; Element[I x, Reals] && 0 < I x < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcCsch", "[", "z", "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"], "-", RowBox[List[RowBox[List["Exp", "[", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "]"]], RowBox[List["(", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "2"], "-", RowBox[List["ArcCsch", "[", "x", "]"]], "+", FractionBox[RowBox[List[RowBox[List["-", "x"]], "+", "z"]], RowBox[List["x", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["x", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "x"]], "+", "z"]], ")"]], "2"]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["x", "2"]]], ")"]]]]], "+", RowBox[List["O", "[", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "3"], "]"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "\[Element]", "Reals"]], "\[And]", RowBox[List["0", "<", RowBox[List["\[ImaginaryI]", " ", "x"]], "<", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mrow> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <arccsch /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <pi /> <imaginaryi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arccsch /> <ci> x </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <imaginaryi /> <ci> x </ci> </apply> <reals /> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCsch", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "2"], "-", RowBox[List["ArcCsch", "[", "x", "]"]], "+", FractionBox[RowBox[List[RowBox[List["-", "x"]], "+", "z"]], RowBox[List["x", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["x", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "x"]], "+", "z"]], ")"]], "2"]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["x", "2"]]]], " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["x", "2"]]], ")"]]]]], "+", SuperscriptBox[RowBox[List["O", "[", RowBox[List["z", "-", "x"]], "]"]], "3"]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "\[Element]", "Reals"]], "&&", RowBox[List["0", "<", RowBox[List["\[ImaginaryI]", " ", "x"]], "<", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.