Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCsch






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCsch[z] > Series representations > Generalized power series > Expansions at z==-i > For small integer powers of the function > For the second power





http://functions.wolfram.com/01.29.06.0060.01









  


  










Input Form





ArcCsch[z]^2 == -(Pi^2/4) + 2 Pi Sqrt[I (z + I)] Sum[(((-I)^k Pochhammer[1/2, k])/k!) Hypergeometric2F1[1/2, 3/2 + k, 3/2, -1] (z + I)^k, {k, 0, Infinity}] - 4 I (z + I) Sum[(((-I)^k Pochhammer[1/2, k])/k!) Hypergeometric2F1[1/2, 3/2 + k, 3/2, -1] (z + I)^k, {k, 0, Infinity}]^2 /; Abs[z + I] < 2










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["ArcCsch", "[", "z", "]"]], "2"], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[Pi]", "2"], "4"]]], "+", RowBox[List["2", "\[Pi]", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "+", "\[ImaginaryI]"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], "k"], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]]]], RowBox[List["k", "!"]]], RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["3", "2"], "+", "k"]], ",", FractionBox["3", "2"], ",", RowBox[List["-", "1"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "\[ImaginaryI]"]], ")"]], "k"]]]]]]], "-", RowBox[List["4", "\[ImaginaryI]", RowBox[List["(", RowBox[List["z", "+", "\[ImaginaryI]"]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], "k"], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]]]], RowBox[List["k", "!"]]], RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["3", "2"], "+", "k"]], ",", FractionBox["3", "2"], ",", RowBox[List["-", "1"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "\[ImaginaryI]"]], ")"]], "k"]]]]], ")"]], "2"]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", RowBox[List["z", "+", "\[ImaginaryI]"]], "]"]], "<", "2"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <mtext> </mtext> <semantics> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;\[ImaginaryI]&quot;]], &quot;)&quot;]], &quot;k&quot;], SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;k&quot;]]], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> &#8520; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> z </mi> <mo> + </mo> <mi> &#8520; </mi> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 2 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <power /> <apply> <arccsch /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> z </ci> <imaginaryi /> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> k </ci> </apply> <apply> <ci> Subscript </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> k </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <imaginaryi /> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <imaginaryi /> <apply> <plus /> <ci> z </ci> <imaginaryi /> </apply> </apply> <apply> <power /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> k </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <imaginaryi /> </apply> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <lt /> <apply> <abs /> <apply> <plus /> <ci> z </ci> <imaginaryi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox[RowBox[List["ArcCsch", "[", "z_", "]"]], "2"], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[Pi]", "2"], "4"]]], "+", RowBox[List["2", " ", "\[Pi]", " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "+", "\[ImaginaryI]"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], "k"], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["3", "2"], "+", "k"]], ",", FractionBox["3", "2"], ",", RowBox[List["-", "1"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "\[ImaginaryI]"]], ")"]], "k"]]], RowBox[List["k", "!"]]]]]]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "+", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], "k"], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["3", "2"], "+", "k"]], ",", FractionBox["3", "2"], ",", RowBox[List["-", "1"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "\[ImaginaryI]"]], ")"]], "k"]]], RowBox[List["k", "!"]]]]], ")"]], "2"]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", RowBox[List["z", "+", "\[ImaginaryI]"]], "]"]], "<", "2"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.