Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCsch






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCsch[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Arguments involving hyperbolic functions > Involving sech





http://functions.wolfram.com/01.29.21.0025.01









  


  










Input Form





Integrate[ArcCsch[Sech[z]], z] == (1/8) (8 z ArcCsch[Sech[z]] + 4 I Pi ArcTanh[(Sqrt[2] Cosh[z])/Sqrt[3 + Cosh[2 z]]] + I Pi Log[(E^z - Sqrt[1 + Cosh[z]^2] - Sinh[z])/E^z] + 2 z Log[(E^z - Sqrt[1 + Cosh[z]^2] - Sinh[z])/E^z] - 2 ArcTanh[Sinh[z]/Sqrt[1 + Cosh[z]^2]] Log[(E^z - Sqrt[1 + Cosh[z]^2] - Sinh[z])/E^z] - I Pi Log[(E^z + Sqrt[1 + Cosh[z]^2] - Sinh[z])/E^z] - 2 z Log[(E^z + Sqrt[1 + Cosh[z]^2] - Sinh[z])/E^z] - 2 ArcTanh[Sinh[z]/Sqrt[1 + Cosh[z]^2]] Log[(E^z + Sqrt[1 + Cosh[z]^2] - Sinh[z])/E^z] + I Pi Log[1 - E^z Sqrt[1 + Cosh[z]^2] + E^z Sinh[z]] + 2 z Log[1 - E^z Sqrt[1 + Cosh[z]^2] + E^z Sinh[z]] - 2 ArcTanh[Sinh[z]/Sqrt[1 + Cosh[z]^2]] Log[1 - E^z Sqrt[1 + Cosh[z]^2] + E^z Sinh[z]] - I Pi Log[1 + E^z Sqrt[1 + Cosh[z]^2] + E^z Sinh[z]] - 2 z Log[1 + E^z Sqrt[1 + Cosh[z]^2] + E^z Sinh[z]] - 2 ArcTanh[Sinh[z]/Sqrt[1 + Cosh[z]^2]] Log[1 + E^z Sqrt[1 + Cosh[z]^2] + E^z Sinh[z]] + 2 PolyLog[2, E^z (Sqrt[1 + Cosh[z]^2] - Sinh[z])] + 2 PolyLog[2, (-Sqrt[1 + Cosh[z]^2] + Sinh[z])/E^z] - 2 PolyLog[2, (Sqrt[1 + Cosh[z]^2] + Sinh[z])/E^z] - 2 PolyLog[2, (-E^z) (Sqrt[1 + Cosh[z]^2] + Sinh[z])])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["ArcCsch", "[", RowBox[List["Sech", "[", "z", "]"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "z", " ", RowBox[List["ArcCsch", "[", RowBox[List["Sech", "[", "z", "]"]], "]"]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox["2"], " ", RowBox[List["Cosh", "[", "z", "]"]]]], SqrtBox[RowBox[List["3", "+", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]], "]"]]]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["Log", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["Sinh", "[", "z", "]"]], SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]], "]"]]]], "-", RowBox[List["2", " ", "z", " ", RowBox[List["Log", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["Sinh", "[", "z", "]"]], SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["Sinh", "[", "z", "]"]], SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]], "-", RowBox[List["2", " ", "z", " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["Sinh", "[", "z", "]"]], SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "+", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", "z"]]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "+", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> - </mo> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> - </mo> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> - </mo> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> + </mo> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> + </mo> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> + </mo> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <arccsch /> <apply> <sech /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <arccsch /> <apply> <sech /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <pi /> <apply> <arctanh /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cosh /> <ci> z </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <ln /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <arctanh /> <apply> <times /> <apply> <sinh /> <ci> z </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <pi /> <apply> <ln /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <ln /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <arctanh /> <apply> <times /> <apply> <sinh /> <ci> z </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <apply> <ln /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <arctanh /> <apply> <times /> <apply> <sinh /> <ci> z </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <pi /> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <arctanh /> <apply> <times /> <apply> <sinh /> <ci> z </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sinh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <sinh /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <sinh /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <sinh /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["ArcCsch", "[", RowBox[List["Sech", "[", "z_", "]"]], "]"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "z", " ", RowBox[List["ArcCsch", "[", RowBox[List["Sech", "[", "z", "]"]], "]"]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox["2"], " ", RowBox[List["Cosh", "[", "z", "]"]]]], SqrtBox[RowBox[List["3", "+", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]], "]"]]]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["Log", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["Sinh", "[", "z", "]"]], SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]], "]"]]]], "-", RowBox[List["2", " ", "z", " ", RowBox[List["Log", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["Sinh", "[", "z", "]"]], SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["Sinh", "[", "z", "]"]], SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]], "-", RowBox[List["2", " ", "z", " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["Sinh", "[", "z", "]"]], SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "+", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", "z"]]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "+", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]]]], "]"]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.