Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSec






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSec[z] > Transformations > Transformations and argument simplifications > Argument involving basic arithmetic operations > Involving sec-1((2z)1/2/(z-(z2-1)1/2)1/2) > Involving sec-1((2z)1/2/(z-(z2-1)1/2)1/2) and sec-1(z)





http://functions.wolfram.com/01.18.16.0109.01









  


  










Input Form





ArcSec[Sqrt[2 z]/Sqrt[z - Sqrt[z^2 - 1]]] == Pi/2 - Sqrt[z] Sqrt[1/z] Sqrt[z + 1] Sqrt[1/(z + 1)] (Sqrt[(-I) z] Sqrt[-(1/(I z))] (1/2) (Pi/2 - ArcSec[z]) - (Pi/4) (Sqrt[z^2]/z - 1))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcSec", "[", FractionBox[SqrtBox[RowBox[List["2", "z"]]], SqrtBox[RowBox[List["z", "-", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List[SqrtBox["z"], SqrtBox[FractionBox["1", "z"]], SqrtBox[RowBox[List["z", "+", "1"]]], SqrtBox[FractionBox["1", RowBox[List["z", "+", "1"]]]], RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]], FractionBox["1", "2"], RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List["ArcSec", "[", "z", "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List[FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"], "-", "1"]], ")"]]]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> sec </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> <msqrt> <mrow> <mi> z </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <msup> <mi> sec </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arcsec /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arcsec /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <pi /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSec", "[", FractionBox[SqrtBox[RowBox[List["2", " ", "z_"]]], SqrtBox[RowBox[List["z_", "-", SqrtBox[RowBox[List[SuperscriptBox["z_", "2"], "-", "1"]]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List[SqrtBox["z"], " ", SqrtBox[FractionBox["1", "z"]], " ", SqrtBox[RowBox[List["z", "+", "1"]]], " ", SqrtBox[FractionBox["1", RowBox[List["z", "+", "1"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]], " ", RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List["ArcSec", "[", "z", "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"], "-", "1"]], ")"]]]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21





© 1998-2014 Wolfram Research, Inc.